如图①,将一张直角三角形纸片ABC折叠,使点A与点C重合,这时DE为折痕,△CBE为等腰三角形,再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样的两个矩形为“叠加矩形”.请完成下列问题:如图②,正方形网格中的△ABC能折叠成“叠加矩形”吗?如能,请在图②中画出折痕;
如图③,在正方形网格中,以给定的BC为一边,画出一个斜△ABC,使其顶点A在格点上,且△ABC折成的“叠加矩形”为正方形;
如果一个三角形所折成的“叠加矩形” 为正方形,那么它必须满足的条件是 .
已知:,求代数式
的值.
如图,在△中,
,
于
,点
在线段
上,
,点
在线段
上,请你从以下两个条件中选择一个作为条件,证明△
≌△
.
(1)∥
;
(2).
.
已知:如图,抛物线与
轴交于点
,与
轴交于
、
两点,点
的坐标为
.
(1)求抛物线的解析式及顶点的坐标;
(2)设点是在第一象限内抛物线上的一个动点,求使与四边形
面积相等的四边形
的点
的坐标;
(3)求的面积.
已知:如图,等边△ABC中,点D为BC边的中点,点F是AB边上一点,点E在线段DF的延长线上,∠BAE=∠BDF,点M在线段DF上,∠ABE=∠DBM.
(1)猜想:线段AE、MD之间有怎样的数量关系,并加以证明;
(2)在(1)的条件下延长BM到P,使MP=BM,连接CP,若AB=7,AE=
,
求tan∠BCP的值.