某地要在规定的时间内安置一批居民,若每个月安置12户居民,则在规定时间内只能安置90%的居民户;若每个月安置16户居民,则可提前一个月完成安置任务,问要安置多少户居民?规定时间为多少个月?(列方程(组)求解)
某老师对本班所有学生的数学考试成绩(成绩为整数,满分为100分)作了统计分析,绘制成如下频数、频率分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题:
分组 |
49.5~59.5 |
59.5~69.5 |
69.5~79.5 |
79.5~89.5 |
89.5~100.5 |
频数 |
2 |
a |
20 |
16 |
8 |
频率 |
0.04 |
0.08 |
0.40 |
0.32 |
b |
(1)求a,b的值;
(2)补全频数分布直方图;
(3)老师准备从成绩不低于80分的学生中选1人介绍学习经验,那么被选中的学生其成绩不低于90分的概率是多少?
在平面直角坐标系xOy中(O为坐标原点),已知抛物线y=x2+bx+c过点A(4,0),B(1,﹣3).
(1)求b,c的值,并写出该抛物线的对称轴和顶点坐标;
(2)设抛物线的对称轴为直线l,点P(m,n)是抛物线上在第一象限的点,点E与点P关于直线l对称,点E与点F关于y轴对称,若四边形OAPF的面积为48,求点P的坐标;
(3)在(2)的条件下,设M是直线l上任意一点,试判断MP+MA是否存在最小值?若存在,求出这个最小值及相应的点M的坐标;若不存在,请说明理由.
如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)求证:BC2=2CD•OE;
(3)若cos∠BAD=,BE=
,求OE的长.
已知某工厂计划用库存的302m3木料为某学校生产500套桌椅,供该校1250名学生使用,该厂生产的桌椅分为A,B两种型号,有关数据如下:
桌椅型号 |
一套桌椅所坐学生人数(单位:人) |
生产一套桌椅所需木材(单位:m3) |
一套桌椅的生产成本(单位:元) |
一套桌椅的运费(单位:元) |
A |
2 |
0.5 |
100 |
2 |
B |
3 |
0.7 |
120 |
4 |
设生产A型桌椅x(套),生产全部桌椅并运往该校的总费用(总费用=生产成本+运费)为y元.
(1)求y与x之间的关系式,并指出x的取值范围;
(2)当总费用y最小时,求相应的x值及此时y的值.