如图,把…张长10cm,宽8cm的矩形硬纸枥的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?
你感到折合而成的长方体盒子的侧面积(不含底面)会不会有最大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由
已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离d可用公式计算.
例如:求点P(﹣2,1)到直线y=x+1的距离.
解:因为直线y=x+1可变形为x﹣y+1=0,其中k=1,b=1.
所以点P(﹣2,1)到直线y=x+1的距离为.
根据以上材料,求:
(1)点P(1,1)到直线y=3x﹣2的距离,并说明点P与直线的位置关系;
(2)点P(2,﹣1)到直线y=2x﹣1的距离;
(3)已知直线y=﹣x+1与y=﹣x+3平行,求这两条直线的距离.
为增强居民节约用电意识,某市对居民用电实行“阶梯收费”,具体收费标准见表:
一户居民一个月用电量的范围 |
电费价格(单位:元/千瓦时) |
不超过160千瓦时的部分 |
x |
超过160千瓦时的部分 |
x+0.15 |
某居民五月份用电190千瓦时,缴纳电费90元.
(1)求x和超出部分电费单价;
(2)若该户居民六月份所缴电费不低于75元且不超过84元,求该户居民六月份的用电量范围.
我州实施新课程改革后,学生的自主字习、合作交流能力有很大提高.某学校为了了解学生自主学习、合作交流的具体情况,对部分学生进行了为期半个月的跟踪调査,并将调査结果分类,A:特别好;B:好;C:一般;D:较差.现将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)本次调查中,一共调査了名同学,其中C类女生有名;
(2)将下面的条形统计图补充完整;
(3)为了共同进步,学校想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男生、一位女生的概率.
如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=.
(1)求证:AC是⊙O的切线;
(2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)
解方程:.