在三张完全相同的卡片上分别标注:A“雨水”、B“大地”、C“生机”,放入一个不透明的的口袋中,随机从中抽出一张放入“给
带来
”左边“
”内;第二次抽出一张放入中间的“
”内;第三次抽出一张放入右边的“
”内(每次卡片抽出后不放回).
试用树形图列出三次抽卡出现的所有可能的结果;
求其中恰好组成“雨水给大地带来生机”的概率.
(1)计算:﹣(π﹣3.14)0+2﹣1;
(2)化简:(a+3)2﹣a(a+3).
(1)如图1,两个等边三角形ABC和A1B1C1的中心(点O)相同,且满足AB∥A1B1,BC∥B1C1,AC∥A1C1,可知AB与 A1B1,BC与B1C1,AC与A1C1之间的距离相等,直线MQ分别交三角形相邻两边于点M、N、P、Q,与AB所成夹角为∠α,
①当∠α=30°时,求的值;
②当30°<∠α<90°,请用含∠α的式子表示;
(2)如图2,两个正方形ABCD和A1B1C1D1的中心(点O)相同,且满足AB∥A1B1,BC∥B1C1,CD∥C1D1,AD∥A1D1,可知AB与A1B1,BC与B1C1,CD与C1D1,AD与A1D1之间的距离相等,直线MQ分别交正方形相邻两边于点M、N、P、Q,与AB所成夹角为∠α,
①当∠α=30°时,求的值;
②当0°<∠α<90°,请用含∠α的式子表示;
(3)根据(1)、(2)的研究,如果正n边形(n>4)的位置关系也满足同样的条件(如图3),正n边形相邻两边被直线MQ截得的两条线段为MN,PQ,请用含m,∠α(0°<∠α<90°)的式子表示.
已知二次函数h=x2﹣(2m﹣1)x+m2﹣m(m是常数,且m≠0)
(1)证明:不论m取何值时,该二次函数图象总与x轴有两个交点;
(2)若A(n﹣3,n2+2)、B(﹣n+1,n2+2)是该二次函数图象上的两个不同点,求二次函数解析式和m的值;
(3)设二次函数h=x2﹣(2m﹣1)x+m2﹣m与x轴两个交点的横坐标分别为x1,x2(其中x1>x2),若y是关于m的函数,且y=2﹣,请结合函数的图象回答:当y<m时,求m的取值范围.
如图,在△ABC中,AB=AC=4,sinC=
,
(1)求BC的长;
(2)作以AC为直径的⊙O,使⊙O交线段AB于点D,交线段BC于点E,并求点D到BC的距离(要求:尺规作图,保留作图痕迹,不写画法)
已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连接CF.
(1)求证:D是BC的中点;
(2)当AB与AC有何数量关系时,四边形ADCF为矩形,请说明理由.