已知中心在坐标原点,焦点在轴上的椭圆C;其长轴长等于4,离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若点(0,1), 问是否存在直线与椭圆交于两点,且?若存在,求出的取值范围,若不存在,请说明理由.
在中,角A, B, C所对的边分别为a, b,c,向量»且满足. (1) 求角C的大小; (2) 若a-b=" 2," C =,求的面积.
已知函数 (1)求函数在点处的切线方程. (2)求函数的单调区间.
已知的内角所对的边分别为,且. (1)若,求的值; (2)若的面积,求的值.
证明: 四点共圆.
如图,D,E分别为的边AB,AC上的点,且不与的顶点重合.已知AE的长的m,AC的长为n,AD,AB的长是关于x的方程的两个根.
解不等式:(1) (2)
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号