现代观测表明,由于引力作用,恒星有“聚集”的特点,.众多的恒星组成不同层次的恒星系统,最简单的恒星系统是两颗互相绕转的双星,如图所示,两星各以一定速率绕其连线上某一点匀速转动,这样才不至于因万有引力作用而吸引在一起,已知双星质量分别为m1、m2,它们间的距离始终为L,引力常数为G,求:
(1)双星旋转的中心O到m1的距离;
(2)双星的转动周期.
如图甲所示,两平行金属板A、B的板长l=0.20 m,板间距d=0.20 m,两金属板间加如图乙所示的交变电压,并在两板间形成交变的匀强电场,忽略其边缘效应。在金属板右侧有一方向垂直于纸面向里的匀强磁场,其左右宽度D="0.40" m,上下范围足够大,边界MN和PQ均与金属板垂直。匀强磁场的磁感应强度B=1.0×10-2 T。现从t=0开始,从两极板左端的中点O处以每秒钟1000个的速率不停地释放出某种带正电的粒子,这些粒子均以vo=2.0×105 m/s的速度沿两板间的中线射入电场,已知带电粒子的比荷=1.0×108 C/kg,粒子的重力和粒子间的相互作用都忽略不计,在粒子通过电场区域的极短时间内极板间的电压可以看作不变.求:
(1) t=0时刻进入的粒子,经边界MN射入磁场和射出磁场时两点间的距离;
(2) 当两金属板间的电压至少为多少时,带电粒子不能进入磁场;
(3) 在电压变化的第一个周期内有多少个带电的粒子能进入磁场。
两足够长的平行金属导轨间的距离为L,导轨光滑且电阻不计,导轨所在的平面与水平面夹角为θ.在导轨所在平面内,分布磁感应强度为B、方向垂直于导轨所在平面的匀强磁场.把一个质量为m的导体棒ab放在金属导轨上,在外力作用下保持静止,导体棒与金属导轨垂直、且接触良好,导体棒与金属导轨接触的两点间的电阻为R1.完成下列问题:
(1)如图甲,金属导轨的一端接一个内阻为r的直流电源。撤去外力后导体棒仍能静止.求直流电源电动势;
(2)如图乙,金属导轨的一端接一个阻值为R2的定值电阻,撤去外力让导体棒由静止开始下滑.在加速下滑的过程中,当导体棒的速度达到v时,求此时导体棒的加速度;
(3)求(2)问中导体棒所能达到的最大速度。
在光滑的水平面上,一质量为mA=0.1kg的小球A,以8 m/s的初速度向右运动,与质量为mB=0.2kg的静止小球B发生弹性正碰。碰后小球B滑向与水平面相切、半径为R=0.5m的竖直放置的光滑半圆形轨道,且恰好能通过最高点N后水平抛出。g=10m/s2。求:
(1) 碰撞后小球B的速度大小;
(2) 小球B从轨道最低点M运动到最高点N的过程中所受合外力的冲量;
(3) 碰撞过程中系统的机械能损失。
某滑板爱好者在离地h=1.8m高的平台上滑行,水平离开A点后落在水平地面的B点,其水平位移x1=3m,着地时由于存在能量损失,着地后速度变为v=4m/s,并以此为初速沿水平地面滑行x2=8m后停止于C点.已知人与滑板的总质量m=60kg,g=10m/s2。(空气阻力忽略不计) 。求
(1) 人与滑板离开平台时的水平初速度;
(2) 人与滑板在水平地面滑行时受到的平均阻力大小。
如图所示,光滑的水平面上放着一块木板,木板处于静止状态,其质量M=2.0kg。质量m="1.0" kg的小物块(可视为质点)放在木板的最右端。现对木板施加一个水平向右的恒力F,使木板与小物块发生相对滑动。已知F=6N,小物块与木板之间的动摩擦因数μ=0.10,g取10m/s。
(1)求木板开始运动时的加速度大小;
(2)在F作用1s后将其撤去,为使小物块不脱离木板,木板至少多长?