游客
题文

为了保证中小学学生上下学的安全,某县根据实际需要计划购买大、中型两种校车共20辆,已知大型校车每辆62万元,中型校车每辆40万元,设购买大型校车x(辆),购车总费用为y(万元).
求y与x的函数关系式(不要求写出自变量x的取值范围);
若购买中型校车的数量少于大型校车的数量,请你给出一种费用最省的方案,
并求出该方案所需费用.

科目 数学   题型 解答题   难度 中等
知识点: 一次函数的最值
登录免费查看答案和解析
相关试题

如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点均在格点上,在建立平面直角坐标系后,点C的坐标为(4,﹣1).

(1)画出△ABC以y轴为对称轴的对称图形△A1B1C1,并写出点C1的坐标;
(2)以原点O为对称中心,画出△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标;
(3)以A2为旋转中心,把△A2B2C2顺时针旋转90°,得到△A2B3C3,并写出点C3的坐标.

已知四边形ABCD是菱形,在平面直角坐标系中的位置如图,边AD经过原点O,已知A(0,﹣3),B(4,0).

(1)求点D的坐标;
(2)求经过点C的反比例函数解析式.

如图,在△ABC中,∠C=90°,cosA=,AC=9.求AB的长和tanB的值.

已知抛物线y=x2+bx+c经过(2,﹣1)和(4,3)两点.
(1)求出这个抛物线的解析式;
(2)将该抛物线向右平移1个单位,再向下平移3个单位,得到的新抛物线解析式为

如图,在平面直角坐标系中,抛物线的顶点A的坐标为(3,15),且过点(﹣2,10),对称轴AB交x轴于点B,点E是线段AB上一动点,以EB为边在对称轴右侧作矩形EBCD,使得点D恰好落在抛物线上,点D′是点D关于直线EC的轴对称点.
(1)求抛物线的解析式;
(2)若点D′恰好落在y轴上的点(0,6)时,求此时D点的坐标;
(3)直线CD′交对称轴AB于点F;
①当点D′在对称轴AB的左侧时,且△ED′F∽△CDE,求出DE:DC的值.
②连结B D′,是否存在点E,使△E D′B为等腰三角形?若存在,请直接写出BE:BC的值;若不存在请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号