如图①,以点M(-1,0)为圆心的圆与y轴、x轴分别交于点A、B、C、D,直线y=-x-与⊙M相切于点H,交x轴于点E,交y轴于点F.请直接写出OE、⊙M的半径r、CH的长;
如图②,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;
如图③,点K为线段EC上一动点(不与E、C重合),连接BK交⊙M于点T,弦AT交x轴于点N.是否存在一个常数a,始终满足MN·MK=a,如果存在,请求出a的值;如果不存在,请说明理由.
如图,A,B是⊙O上的两个定点,P是⊙O上的动点(P不与A,B重合),我们称∠APB是⊙O上关于A、B的滑动角
(1)已知∠APB是⊙O上关于点A、B的滑动角,
①若AB是⊙O的直径,则∠APB=°;
②若⊙O的半径是1,AB=,求∠APB的度数;
(2)已知O2是⊙O1外一点,以O2为圆心作一个圆与⊙O1相交于A、B两点,∠APB是⊙O1上关于点A、B的滑动角,直线PA、PB分别交⊙O2于M、N(点M与点A、点N与点B均不重合),连接AN,试探索∠APB与∠MAN、∠ANB之间的数量关系,直接写出结论.
观察图形,解答问题:
(1)按下表已填写的形式填写表中的空格:
图① |
图② |
图③ |
|
三个角上三个数的积 |
1×(-1)×2=-2 |
(-3)×(-4)×(-5)=-60 |
|
三个角上三个数的和 |
1+(-1)+2=2 |
(-3)+(-4)+(-5)=-12 |
|
积与和的商 |
-2÷2=-1, |
请用你发现的规律求出图④中的数y和图⑤中的数x.
如图,在△ABC中,AB=AC,∠B=30°,BC=8,D在边BC上,E在线段DC上,DE=4,△DEF是等边三角形,边DF交边AB于点M,边EF交边AC于点N.
(1)求证:△BMD∽△CNE;
(2)当BD为何值时,以M为圆心,以MF为半径的圆与BC相切?
(3)设BD=x,五边形ANEDM的面积为y,求y与x之间的函数解析式及自变量x的取值范围;当x为何值时,y有最大值?并求出y的最大值.
某童装厂现有甲种布料38米,乙种布料26米,现计划用这两种布料生产L、M两种型号的童装共50套.已知做一套L型号的童装需用甲种布料0.5米,乙种布料1米,可获利45元;做一套M型号童装需用甲种布料0.9米,乙种布料0.2米,可获利30元,设生产L型号的童装套数为x,用这批布料生产这两种型号的童装所获的利润为y(元).
(1)如果你作为该厂的老板,应如何安排生产计划?请设计出所有生产方案;
(2)该厂在生产这批童装中,当L型号的童装为多少套时,能使该厂所获的利润最大?最大利润为多少?
(1)比较下列算式结果的大小;
;
;
;
(2)观察以上各式所反映的规律,用一个含字母的式子表示出来;
(3)若,求
的最小值;
(4)若是正数,则
的最小值为。