为了加强食品安全管理,有关部门对某大型超市的甲乙两种品牌食用油共抽取20瓶进行检测,检测结果分成“优秀”,“合格”,“不合格”三个等级,数据处理后制成以下折线统计图和扇形统计图
⑴甲乙两种品牌食用油各被抽取了多少瓶用于检测?
⑵在该超市购买一瓶甲品牌食用油,请估计能买到“优秀”等级的概率是多少?
如图,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A顺时针旋转90°
(1)画出旋转之后的△AB′C′;
(2)求线段AC旋转过程中扫过的扇形的面积.
化简:.
解方程组:
如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.
(1)求直线AB的解析式;
(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;
(3)是否存在点P,使△OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
如图1,已知抛物线
经过
、
两点.
(1)求抛物线的解析式;
(2)将直线
向下平移
个单位长度后,得到的直线与抛物线只有一个公共点
,求
的值及点
的坐标;
(3)如图2,若点
在抛物线上,且
,则在(2)的条件下,求出所有满足
的点
坐标(点
、
、
分别与点
、
、
对应).