(本小题满分14分)
(1)已知等差数列{an}的前n项和为Sn,若m+n=s+t(m,n,s,t∈N*,且m≠n,s≠t),证明;=
;
(2)注意到(1)中Sn与n的函数关系,我们得到命题:设抛物线x2=2py(p>0)的图像上有不同的四点A,B,C,D,若xA,xB,xC,xD分别是这四点的横坐标,且xA+xB=xC+xD,则AB∥CD,判定这个命题的真假,并证明你的结论
(3)我们知道椭圆和抛物线都是圆锥曲线,根据(2)中的结论,对椭圆+
=1(a>b>0)提出一个有深度的结论,并证明之.
已知是关于
的方程
的两个根,且
.
(1)求出与
之间满足的关系式;
(2)记,若存在
,使不等式
在其定义域范围内恒成立,求
的取值范围.
(如图1)在平面四边形中,
为
中点,
,
,且
,现沿
折起使
,得到立体图形(如图2),又B为平面ADC内一点,并且ABCD为正方形,设F,G,H分别为PB,EB,PC的中点.
(1)求三棱锥的体积;
(2)在线段PC上是否存在一点M,使直线与直线
所成角为
?若存在,求出线段的长;若不存在,请说明理由.
已知函数(
均为正常数),设函数
在
处有极值.
(1)若对任意的,不等式
总成立,求实数
的取值范围;
(2)若函数在区间
上单调递增,求实数
的取值范围.
已知数列为等差数列,数列
为等比数列且公比大于1,若
,
,且
恰好是一各项均为正整数的等比数列的前三项.
(1)求数列,
的通项公式;
(2)设数列满足
,求
.
如图,在直三棱柱中,
,点
分别为
和
的中点.
(1)证明:平面
;
(2)求和
所成的角.