在某市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理. 已知运往D地的数量比运往E地的数量的2倍少l0立方来.求运往D、E两地的数量各是多少立方米?
若A地运往D地
立方米(
为整数), B地运往D地30立方米. C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地.且C地运往E地不超过 l2立方米.则A、C两地运往D、E两地有哪几种方案?
已知,如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.
求证:△BEC≌△CDA.
先化简,再求值:[(x-y)2+(x+y)(x-y)]÷2x,其中x=3,y=—1.5 .
将下列各式分解因式:(1)x3-x;(2)-x2y+2xy2-y3.
计算:5x(2x+1)—(2x+3)(5x—1)
如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);
(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?
(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;
(4)若点D是数轴上一点,点D表示的数是x,请你探索式子是否有最小值?如果有,直接写出最小值;如果没有,说明理由.