游客
题文

问题情境:
用同样大小的黑色棋子按如图所示的规律摆放,则第2012个图共有多少枚棋子?

建立模型:
有些规律问题可以借助函数思想来探讨,具体步骤:第一步,确定变量;第二步:在直角坐标系中画出函数图象;第三步:根据函数图象猜想并求出函数关系式;第四步:把另外的某一点代入验证,若成立,则用这个关系式去求解.
解决问题:
根据以上步骤,请你解答“问题情境”.

科目 数学   题型 解答题   难度 较易
知识点: 一次函数的最值
登录免费查看答案和解析
相关试题

如图, 等腰梯形ABCD中,AB=15,AD=20,∠C=30º.点M、N同时以相同速度分别从点A、点D开始在AB、AD(包括端点)上运动.
(1)设ND的长为x,用x表示出点N到AB的距离,并写出x的取值范围.
(2)当五边形BCDNM面积最小时,请判断△AMN的形状.

某化工材料经销公司购进了一种化工原料共7000kg,购进价格为每千克30元,物价部门规定其销售单价不得高于每千克70元,也不得低于30元,市场调查发现:单价定为70元时,日均销售60kg;单价每降低1元,日均多售出2kg,在销售过程中,每天还要除去其他费用400元(天数不足一天时,按整天计算).设销售单价为x元,日均获利为y元. (日均获利=销售所得利润-各种开支)
(1)求y关于x的函数关系式并写出x的取值范围.
(2)求每千克单价定为多少元时日均获利最多,是多少?
(3)若用日均获利最多的方式销售或按销售单价最高销售,试比较哪一种销售获总利更多,多多少?

张大伯计划建一个面积为72平方米的矩形养鸡场,为了节约材料,鸡场一边靠着原有的一堵墙(墙长15米),另外的部分(包括中间的隔墙)用30米的竹篱笆围成,如图。
(1).请你通过计算帮助张大伯设计出围养鸡场的方案.
(2).在上述条件不变的情况下,能围出比72平方米更大的养鸡场吗?请说明理由。

先化简(6x+ -(4y+ )再求值,其中

先阅读,后解答:

像上述解题过程中,相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化,
(1)的有理化因式是的有理化因式是
(2)将下列式子进行分母有理化:
=;②=
(3)已知,比较的大小关系。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号