游客
题文

如图,已知点,圆是以为直径的圆,直线,(为参数).
(1)以坐标原点为极点,轴正半轴为极轴,建立极坐标系,求圆的极坐标方程;
(2)过原点作直线的垂线,垂足为,若动点满足,当变化时,求点轨迹的参数方程,并指出它是什么曲线.

科目 数学   题型 解答题   难度 较易
知识点: 圆的方程的应用
登录免费查看答案和解析
相关试题

A(x1y1),B(x2y2)是椭圆C=1(a>b>0)上两点,已知mn,若m·n=0且椭圆的离心率e,短轴长为2,O为坐标原点.
(1)求椭圆的方程;
(2)试问△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

已知动点P到点A(-2,0)与点B(2,0)的斜率之积为-,点P的轨迹为曲线C.

(1)求曲线C的方程;
(2)若点Q为曲线C上的一点,直线AQBQ与直线x=4分别交于MN两点,直线BM与椭圆的交点为D.求证,ADN三点共线.

在平面直角坐标系xOy中,动点P到直线lx=2的距离是到点F(1,0)的距离的倍.
(1)求动点P的轨迹方程;
(2)设直线FP与(1)中曲线交于点Q,与l交于点A,分别过点PQl的垂线,垂足为MN,问:是否存在点P使得△APM的面积是△AQN面积的9倍?若存在,求出点P的坐标;若不存在,说明理由.

已知椭圆C1=1,椭圆C2C1的短轴为长轴,且与C1有相同的离心率.
(1)求椭圆C2的方程;
(2)设直线l与椭圆C2相交于不同的两点AB,已知A点的坐标为(-2,0),点Q(0,y0)在线段AB的垂直平分线上,且=4,求直线l的方程.

在数列{an}中,a1=1,{an}的前n项和Sn满足2Snan+1.
(1)求数列{an}的通项公式;
(2)若存在n∈N*,使得λ,求实数λ的最大值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号