如图,是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减少传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.求新传送带AC的长度(结果精确到0.1米);
求新传送带与旧传送带货物着地点C、B之间的距离.(结果精确到0.1米,参考数据:
≈1.41,
≈1.73,
≈2.24,
≈2.45)
小明和小芳做配紫色游戏,如图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色.
(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;
(2)若出现紫色,则小明胜,否则小芳胜.此游戏的规则对小明、小芳公平吗?试说明理由.
解方程:
(1)
(2)
如图,半圆O直径DE=12,Rt△ABC中,BC=12,∠ACB=90°,∠ABC=30°.半圆O从左到右运动,在运动过程中,点D,E始终在直线BC上,半圆O在△ABC的左侧.
(1)当△ABC的一边与半圆O相切时,请画出符合题意得图形。
(2)当△ABC的一边与半圆O相切时,如果半圆O与直径DE围成的区域与△ABC的三边围成的区域有重叠部分,求重叠部分的面积
如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.
(1)请完成如下操作:①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD.
(2)请在(1)的基础上,完成下列填空:
①写出点的坐标:C 、D ;
②⊙D的半径= (结果保留根号);
③∠ADC的度数为 .
④网格图中是否存在过点B的直线BE是⊙D的切线,如果没有,请说明理由;如果有,请直接写出直线BE的函数解析式。
如图,已知BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,E为AC的中点,连结DE.
(1)若AD=DB,OC=5,求切线AC的长;
(2)求证:ED是⊙O的切线.