为庆祝中国共产党成立100周年,某校举行党史知识竞赛活动,赛后随机抽取了部分学生的成绩,按得分划分为 、 、 、 四个等级,并绘制了如下不完整的统计表和统计图.
等级 |
成绩 |
人数 |
|
|
15 |
|
|
|
|
|
18 |
|
|
7 |
根据图表信息,回答下列问题:
(1)表中 ;扇形统计图中, 等级所占的百分比是 ; 等级对应的扇形圆心角为 度;若全校共有1800名学生参加了此次知识竞赛活动,请估计成绩为 等级的学生共有 人;
(2)若95分以上的学生有4人,其中甲、乙两人来自同一班级,学校将从这4人中随机选出两人参加市级比赛,请用列表或树状图法求甲、乙两人至少有1人被选中的概率.
如图,抛物线 交 轴于 , 两点,交 轴于点 ,点 为线段 上的动点.
(1)求抛物线的解析式;
(2)求 的最小值;
(3)过点 作 交抛物线的第四象限部分于点 ,连接 , ,记 与 面积分别为 , ,设 ,求点 坐标,使得 最大,并求此最大值.
某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量 (件 是关于售价 (元 件)的一次函数,如表仅列出了该商品的售价 ,周销售量 ,周销售利润 (元 的三组对应值数据.
|
40 |
70 |
90 |
|
180 |
90 |
30 |
|
3600 |
4500 |
2100 |
(1)求 关于 的函数解析式(不要求写出自变量的取值范围);
(2)若该商品进价 (元 件),售价 为多少时,周销售利润 最大?并求出此时的最大利润;
(3)因疫情期间,该商品进价提高了 (元 件) ,公司为回馈消费者,规定该商品售价 不得超过55(元 件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求 的值.
如图,在 中, ,点 在 边上,过 , , 三点的 交 边于另一点 ,且 是 的中点, 是 的一条直径,连接 并延长交 边于 点.
(1)求证:四边形 为平行四边形;
(2)当 时,求 的值.
已知关于 的一元二次方程 有 , 两实数根.
(1)若 ,求 及 的值;
(2)是否存在实数 ,满足 ?若存在,求出实数 的值;若不存在,请说明理由.