已知二次函数的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.
(1)如图①,连接AC,将△OAC沿直线AC翻折,若点O的对应点O'恰好落在该抛物线的对称轴上,求实数a的值;
(2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于边EF的右侧.若点P是边EF或边FG上的任意一点,求证四条线段PA、PB、PC、PD不能构成平行四边形;
(3)如图②,正方形EFGH向左平移个单位长度时,正方形EFGH上是否存在一点P(包括正方形的边界),使得四条线段PA、PB、PC、PD能够构成平行四边形?如果存在,请求出
的取值范围.
(本题10分)某农户承包果树若干亩,今年投资13800元,收获水果总产量为18000千克.此水果在市场上每千克售元,在果园直接销售每千克售
元(
<
).该农户将水果拉到市场出售平均每天出售1000千克,需2人帮忙,每人每天付工资100元,农用车运费及其他各项税费平均每天200元.
(1)分别用含,
的代数式表示两种方式出售水果的收入.
(2)若=4.5元,
=4元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.
(3)该农户加强果园管理,力争到明年纯收入达到72000元,而且该农户采用了(2)中较好的出售方式出售,那么纯收入增长率是多少(纯收入=总收入-总支出)?
(本题8分)某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):
星期 |
一 |
二 |
三 |
四 |
五 |
六 |
日 |
增减(单位:个) |
+5 |
-2 |
-5 |
+15 |
-10 |
+16 |
-9 |
(1)根据记录的数据,该厂星期一生产工艺品的数量为个;
(2)根据记录的数据,该厂本周产量最多的一天比最少的一天多生产个工艺品;
(3)该工艺厂在本周实际生产工艺品的数量为个;
(4)已知该厂实行每周计件工资制,每周结算一次,且每生产一个工艺品可得60元,若超额完成任务,则超过部分每个另奖50元,少生产一个扣80元.试求该工艺厂在这一周应付出的工资总额.
(本题4分)先化简再求值:,其中
(本题6分)已知:
(本题6分)化简:
(1)
(2)