某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为.现有10件产品,其中6件是一等品,4件是二等品.
(1)随机选取1件产品,求能够通过检测的概率;
(2)随机选取3件产品,其中一等品的件数记为,求
的分布列;
(3)随机选取3件产品,求这三件产品都不能通过检测的概率.
在△ABC中,角A、B、C的对边分别为a、b、c.已知a+b=5,c =,
(1)求角C的大小;
(2)求△ABC的面积.
已知点是直角坐标平面内的动点,点
到直线
(
是正常数)的距离为
,到点
的距离为
,且
1.
(1)求动点P所在曲线C的方程;
(2)直线过点F且与曲线C交于不同两点A、B,分别过A、B点作直线
的垂线,对应的垂足分别为
,求证
=
;
(3)记,
,
(A、B、是(2)中的点),
,求
的值.
设函数.
(1) 试问函数f(x)能否在x= 时取得极值?说明理由;
(2) 若a= ,当x∈[
,4]时,函数f(x)与g(x)的图像有两个公共点,求c的取值范围.
某种产品的广告费支出与销售额
(单位:万元)之间有如下对应数据:
![]() |
2 |
4 |
5 |
6 |
8 |
![]() |
30 |
40 |
60 |
50 |
70 |
(Ⅰ)求回归直线方程;
(Ⅱ)试预测广告费支出为10万元时,销售额多大?
(Ⅲ)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率。
(参考数据:,
参考公式:回归直线方程,其中
)