如图,某高速公路建设中需要确定隧道AB的长度.当飞机在离地面高度CE=1500m时,测量人员从C处测得A、B两点处的俯角分别为60°和45°.求隧道AB的长(≈1.732,结果保留整数).
已知:△ABC是⊙O的内接三角形,AB=AC,在∠BAC所对弧AC上,任取一点D,连接AD,BD,CD,
(1)如图1,∠BAC=,直接写出∠ADB的大小(用含
的式子表示);
(2)如图2,如果BAC=60°,求证:BD+CD=AD;
(3)如图3,如果BAC=120°,那么BD+CD与AD之间的数量关系是什么?写出猜测并加以证明.
已知关于的一元二次方程
有实数根,
为正整数.
(1)求的值;
(2)当此方程有两个非零的整数根时,将关于的二次函数
的图象向下平移9个单位,求平移后的图象的表达式;
(3)在(2)的条件下,平移后的二次函数的图象与x轴交于点A,B(点A在点B左侧),直线过点B,且与抛物线的另一个交点为C,直线BC上方的抛物线与线段BC组成新的图象,当此新图象的最小值大于-5时,求k的取值范围.
探究发现:
如图1,△ABC是等边三角形,点E在直线BC上,∠AEF=60°,EF交等边三角形外角平分线CF于点F,当点E是BC的中点时,有AE=EF成立;
数学思考:某数学兴趣小组在探究AE,EF的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:
当点E是直线BC上(B,C除外)(其它条件不变),结论AE=EF仍然成立.请你从“点E在线段BC上”;“点E在线段BC延长线”;“点E在线段BC反向延长线上”三种情况中,任选一种情况,在图2中画出图形,并证明AE=EF.
拓展应用:当点E在线段BC的延长线上时,若CE=BC,在图3中画出图形,并运用上述结论求出的值.
如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.
(1)求证:直线EF是⊙O的切线;
(2)CF=5,cos∠A = ,求BE的长.
有六张完全相同的卡片,分A,B两组,每组三张,在A组的卡片上分别画上☆○☆,B组的卡片上分别画上☆○○,如图1所示.
(1)若将卡片无标记的一面朝上摆在桌上,再分别从两组卡片中随机各抽取一张,求两张卡片上标记都是☆的概率(请用画树形图法或列表法求解)
(2)若把A,B两组卡片无标记的一面对应粘贴在一起得到3张卡片,其正反面标记如图2所示,将卡片正面朝上摆放在桌上,并用瓶盖盖住标记.若揭开盖子,看到的卡片正面标记是☆后,猜想它的反面也是☆,求猜对的概率是多少?