如图,一转盘被等分成三个扇形,上面分别标有-1,1,2中的一个数,指针位置固定,转动转盘后任其自由停止,这时,某个扇形会恰好停在指针所指的位置,并相应得到这个扇形上的数(若指针恰好指在等分线上,当做指向右边的扇形).
(1)若小静转动转盘一次,求得到负数的概率;
(2)小宇和小静分别转动转盘一次,若两人得到的数相同,则称两人“不谋而合”.用列表法(或画树状图)求两人“不谋而合”的概率.
我市自开展“学习新思想,做好接班人”主题阅读活动以来,受到各校的广泛关注和同学们的积极响应,某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.
某校抽查的学生文章阅读的篇数统计表
文章阅读的篇数(篇 |
3 |
4 |
5 |
6 |
7及以上 |
人数(人 |
20 |
28 |
|
16 |
12 |
请根据统计图表中的信息,解答下列问题:
(1)求被抽查的学生人数和 的值;
(2)求本次抽查的学生文章阅读篇数的中位数和众数;
(3)若该校共有800名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数.
已知抛物线 与 轴有两个不同的交点.
(1)求 的取值范围;
(2)若抛物线 经过点 和点 ,试比较 与 的大小,并说明理由.
化简: .
计算: .
如图,已知锐角三角形 内接于圆 , 于点 ,连接 .
(1)若 ,
①求证: .
②当 时,求 面积的最大值.
(2)点 在线段 上, ,连接 ,设 , , 是正数),若 ,求证: .