如图,等边三角形 O A B 的边长为 8 3 ,且其三个顶点均在抛物线 E : x 2 = 2 p y ( p > 0 ) 上。
(1)求抛物线 E 的方程; (2)设动直线 l 与抛物线 E 相切于点 P ,与直线 y = - 1 相交于点 Q ,证明以 P Q 为直径的圆恒过 y 轴上某定点.
已知在△ABC中,a=,b=,A=30°,求c
求的值
已知函数. (1)当时,求函数图象在点处的切线方程; (2)当时,讨论函数的单调性; (3)是否存在实数,对任意的恒成立?若存在,求出a的取值范围;若不存在,说明理由.
已知椭圆,过焦点垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形. (1)求椭圆的方程; (2)过点的直线l交椭圆于A,B两点,交直线于点E,判断是否为定值,若是,计算出该定值;不是,说明理由.
设数列为等差数列,且;数列的前n项和为. (1)求数列,的通项公式; (2)若为数学的前n项和,求.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号