如图,在正方形网格中,△OAB的顶点分别为O(0,0),A(1,2),B(2,-1).
(1)以点O(0,0)为位似中心,按比例尺3:1在位似中心的同侧将△OAB放大为△OA’B’,放大后点A、B的对应点分别为A’、B’ .画出△OA’B’,并写出点A’、B’的坐标:A’( ),B’( ).
(2)在(1)中,若为线段
上任一点,写出变化后点
的对应点
的坐标 ( ).
如图,在正方形网格中,△ABC各顶点都在格点上,点A,C的坐标分别为(﹣5,1)、(﹣1,4),结合所给的平面直角坐标系解答下列问题:
(1)画出△ABC关于y轴对称的△A1B1C1;
(2)画出△ABC关于原点O对称的△A2B2C2;
(3)点C1的坐标是;点C2的坐标是;过C、C1、C2三点的圆的圆弧的长是(保留π).
关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1、x2.
(1)求m的取值范围
(2)若2(x1+x2)+x1x2+10=0,求m的值
如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.求证:AE∥CF.
解方程:
(1)
(2)
(3)
(4)
已知A(,0),直线
与x轴交于点F,与y轴交于点B,直线l∥AB且交y轴于点C,交x轴于点D,点A关于直线l的对称点为A′,连接AA′、A′D.直线l从AB出发,以每秒1个单位的速度沿y轴正方向向上平移,设移动时间为t.
(1)求点A′的坐标(用含t的代数式表示);
(2)求证:AB=AF;
(3)过点C作直线AB的垂线交直线于点E,以点C为圆心CE为半径作⊙C,求当t为何值时,⊙C与△AA′D三边所在直线相切?