已知函数
(I) 讨论
的单调性;
(II)设
有两个极值点
若过两点
的直线I与
轴的交点在曲线
上,求
的值。
(本小题满分10分)选修4—5:不等式选讲
已知关于x的不等式(其中
)。
(Ⅰ)当a=4时,求不等式的解集;(Ⅱ)若不等式有解,求实数a的取值范围。
选修4—4:坐标系与参数方程
在极坐标系中,曲线,
过点A(5,α)(α为锐角且)作平行于
的直线
,且
与曲线L分别交于B,C两点。
(Ⅰ)以极点为原点,极轴为x轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L和直线的普通方程;
(Ⅱ)求|BC|的长。
选修4-1:几何证明选讲
如图,圆O1与圆O2相交于A、B两点,AB是圆O2的直径,过A点作圆O1的切线交圆O2于点E,并与BO1的延长线交于点P,PB分别与圆O1、圆O2交于C,D两点。
求证:(Ⅰ)PA·PD=PE·PC;(Ⅱ)AD=AE。
已知函数
(Ⅰ)若为
的极值点,求实数
的值;
(Ⅱ)若在
上为增函数,求实数
的取值范围;
(Ⅲ)当时,方程
有实根,求实数
的最大值.
已知中心在原点,焦点在坐标轴上的椭圆,它的离心率为
,一个焦点和抛物线
的焦点重合,过直线
上一点M引椭圆
的两条切线,切点分别是A,B.
(Ⅰ)求椭圆的方程;
(Ⅱ)若在椭圆上的点
处的椭圆的切线方程是
. 求证:直线
恒过定点
;并出求定点
的坐标.
(Ⅲ)是否存在实数,使得
恒成立?(点
为直线
恒过的定点)若存在,求出
的值;若不存在,请说明理由。