已知函数
(I) 讨论
的单调性;
(II)设
有两个极值点
若过两点
的直线I与
轴的交点在曲线
上,求
的值。
(本小题满分14分)设、
是焦距为
的椭圆
的左、右顶点,曲线
上的动点
满足
,其中,
和
是分别直线
、
的斜率.
(1)求曲线的方程;
(2)直线与椭圆
只有一个公共点且交曲线
于
两点,若以线段
为直径的圆过点
,求直线
的方程.
(本小题满分14分)已知数列满足
,
,
.
(1)求证:数列是等差数列;
(2)求证:.
(本小题满分14分)如图,是边长为
的正方形,
是矩形,平面
平面
,
为
的中点.
(1)求证://平面
;
(2)若三棱锥的体积为
,求二面角
的正切值.
(本小题满分12分)某校为了响应《中共中央国务院关于加强青少年体育增强青少年体质的意见》精神,落实“生命—和谐”教育理念和阳光体育行动的现代健康理念,学校特组织“踢毽球”大赛,某班为了选出一人参加比赛,对班上甲乙两位同学进行了次测试,且每次测试之间是相互独立.成绩如下:(单位:个/分钟)
甲 |
80 |
81 |
93 |
72 |
88 |
75 |
83 |
84 |
乙 |
82 |
93 |
70 |
84 |
77 |
87 |
78 |
85 |
(1)用茎叶图表示这两组数据
(2)从统计学的角度考虑,你认为选派那位学生参加比赛合适,请说明理由?
(3)若将频率视为概率,对甲同学在今后的三次比赛成绩进行预测,记这三次成绩高于个/分钟的次数为
,求
的分布列及数学期望
.
(参考数据:,
)
(本小题满分12分)已知函数
(1)求函数的最小正周期和最大值;
(2)设的三内角分别是A、B、C.若
,且
,求
的值.