已知一次函数的图象与反比例函数
(
)的图象交于
、
两点。
(1)求反比例函数和一次函数的解析式,求出点B的坐标;
(2)在同一坐标系中画出两个函数的图像的示意图,并观察图像回答:当为何值时,
?
(3)已知点C(1,0),求出△ABC的面积。
(4)在BC上是否存在一点E,使得直线AE将△ABC的面积二等分,如果存在请你画出这条直线,求出点E的坐标;如果不存在,请简单说明理由。
求证:等腰三角形的两底角相等.
已知:如图,在△ABC中,AB=AC.
求证:∠B=∠C.
先化简:,再选取一个适当的m的值代入求值.
在Rt△ACB和Rt△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE.
特殊发现:如图1,若点E,F分别落在边AB,AC上,则结论:PC=PE成立(不要求证明).
问题探究:把图1中的△AEF绕着点A顺时针旋转.
(1)如图2,若点E落在边CA的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;
(2)如图3,若点F落在边AB上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;
(3)记,当k为何值时,△CPE总是等边三角形?(请直接写出k的值,不必说明理由)
抛物线,若a,b,c满足b=a+c,则称抛物线
为“恒定”抛物线.
(1)求证:“恒定”抛物线必过x轴上的一个定点A;
(2)已知“恒定”抛物线的顶点为P,与x轴另一个交点为B,是否存在以Q为顶点,与x轴另一个交点为C的“恒定”抛物线,使得以PA,CQ为边的四边形是平行四边形?若存在,求出抛物线解析式;若不存在,请说明理由.
如图,矩形OABC,点A,C分别在x轴,y轴正半轴上,直线交边BC于点M(m,n)(m<n),并把矩形OABC分成面积相等的两部分,过点M的双曲线
(
)交边AB于点N.若△OAN的面积是4,求△OMN的面积.