在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.
(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;
(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数的图象上的概率;
(3)求小明、小华各取一次小球所确定的数x、y满足的概率.
已知与
成反比例,且当
时,
(1)求与
之间的函数关系式;
(2)求当时,
的值。
如图,AB是⊙O的直径,且AD∥OC,若弧AD的度数为80°,求弧CD的度数。
如图1所示,已知在△ABC和△DEF中, ,
.
(1)试说明:△ABC≌△FED的理由;
(2)若图形经过平移和旋转后得到如图2,若,试求∠DHB的度数;
(3)若将△ABC继续绕点D旋转后得到图3,此时D、B、F三点在同一条直线上,若DF:FB=3:2,连结EB,已知△ABD的周长是12,且AB-AD=1,你能求出四边形ABED的面积吗?若能,请求出来;若不能,请说明理由。
某山区有若干名中、小学生因贫困失学需要捐款,某中学七八年级学生举行“献爱心”募捐活动。七、八年级学生的捐款数额、恰好资助的贫困学生人数的部分情况如下表:
捐款数额(元) |
资助贫困中学生人数 |
资助贫困小学生人数 |
|
初一年级 |
4000 |
2 |
4 |
初二年级 |
4200 |
3 |
3 |
问每位贫困中学生和小学生每年的生活费用分别需要多少元?
请你依据下面的寻宝游戏规则,探究“寻宝游戏”的奥秘。
(1)用树状图或列表的方式表示出所有可能的寻宝情况
(2)求在寻宝游戏中胜出的概率。