“体验·创新·成长”这是2012某市第八届少年科技大赛的宗旨.比赛分为四类:优秀科技实践活动、科技创新活动项目、优秀少儿科学幻想绘画、科技创新成果.评委对所有的参赛作品进行了分类统计,各类参赛作品按一定的百分比设奖,并对获奖作品也进行分类,制作了如下的条形统计图及扇形统计图:
作根据上述信息,完成下列问题:
(1) 参赛获奖品总数是 件;
(2) 算出获奖优秀科技实践活动所在扇形的圆心角的度数,并将条形图补充完整;
(3)全市中小学生参加少年科技大赛热情高涨,在2012参赛作品328件的基础上逐年增长,预计2014年参赛作品将有738件,求平均每年的增长率是多少?
(本小题满分12分)我们新定义一种三角形:两边平方和等于第三边平方的两倍的三角形叫做奇异三角形.
(1)根据“奇异三角形”的定义,请你判断命题“等边三角形一定是奇异三角形”是真命题还是假命题?
(2)在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c;
(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A,B重合),D是半圆的中点,C,D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.
①求证:△ACE是奇异三角形;
②当△ACE是直角三角形时,求∠AOC的度数.
(本小题满分12分)点P为抛物线y=x2-2mx+m2(m为常数,m>0)上任一点,将抛物线绕顶点G逆时针旋转90°后得到的新图象与y轴交于A,B两点(点A在点B的上方),点Q为点P旋转后的对应点.
(1)当m=2,点P横坐标为4时,求Q点的坐标;
(2)设点Q(a,b),用含m,b的代数式表示a;(直接写出结果)
(3)如图,点Q在第一象限内,点D在并轴的正半轴上,点C为OD的中点,QD平分∠AQC,AQ=2QC,当QD=m时,求m的值.
(本小题满分10分)如图,⊙O是△ABC的外接圆,AB=AC=10,BC=12,P是圆上的一个动点,过点P作BC的平行线交AB的延长线于点D.
(1)当点P在什么位置时,DP是⊙O的切线?请说明理由;
(2)当DP为⊙O的切线时,求线段DP的长.
(本小题满分10分)某商店第一次用600元购进某种铅笔若干支,第二次又用600元购进该种铅笔,但这次每支的进价比第一次贵l元,所以购进数量比第一次少了30支.
(1)求第一次每支铅笔的进价及购进的数量;
(2)若将这两次购进的铅笔按同一单价x(元,支)全部销售完毕,并要求获利不低于420元,求获利y(元)关于单价x(元/支)的函数关系式及定义域,并在直角坐标系内画出它的大致图象.
(本小题满分10分)已知:如图,在直角梯形ABCD中,AD∥BC,AB⊥AD,BC=CD,BE⊥CD,垂足为点E,点F在BD上,连接AF,EF.
(1)求证:AD=ED;
(2)如果AF∥CD,求证:四边形ADEF是菱形.