解方程:.
解方程:.
有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,
∠FDE=90°,DF=4,DE=。将这副直角三角板按如图(1)所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上,现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动。
(1)如图(2),当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC=度;
(2)如图(3),在三角板DEF运动过程中,当EF经过点C时,求FC的长;
(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分面积为y,求y与x的函数解析式,并求出对应的x取值范围。
如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.
(1)求证:∠BCA=∠BAD;
(2)求DE的长;
(3)求证:BE是⊙O的切线。
已知二次函数
.
(1)当二次函数的图象经过坐标原点
时,求二次函数的解析式;
(2)如图,当
时,该抛物线与
轴交于点
,顶点为
,求
、
两点的坐标;
(3)在(2)的条件下,
轴上是否存在一点
,使得
最短?若
点存在,求出
点的坐标;若
点不存在,请说明理由。
如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.
(1)设Rt△CBD的面积为S1, Rt△BFC的面积为S2, Rt△DCE的面积为S3 , 则S1S2+ S3(用“>”、“=”、“<”填空);
(2)写出图中的三对相似三角形,并选择其中一对进行证明.