某商场推出优惠购买练习本和笔的促销活动,两种商品原售价分别为10元/本和3元/支。商场制定了两种优惠方案:(1)买一本练习本赠送1支笔;(2)按总价打8折。
(1)小赵需购买3本练习本和8支笔,选择哪种优惠方案合算?
(2)若某学校需购买300本练习本和支笔(x≥300),试讨论选择哪种优惠方案更省钱?
如图,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路,宽均为1米,其它部分均种植花草.试求出种植花草的面积是多少?
如图,用剪刀沿直线剪去五边形的一个角得到一个新的五边形,你能想出剪去一个角的其它方法吗?在图(2)(3)中画出示意图,并回答剪去一个角后剩下的是几边形?并求出剪后得到的多边形的内角和.
过A、B、C、D、E五个点中任意三点画三角形;
(1)其中以AB为一边可以画出 个三角形;
(2)其中以C为顶点可以画出 个三角形.
(1)如图1,已知∠1=∠2,∠B=∠C,可推得AB∥CD,理由如下:
∵∠1=∠2(已知),
且∠1=∠CGD( ),
∴∠2=∠CGD(等量代换)
∴CE∥BF( )
∴∠ ECD =∠BFD( )
又∵∠B=∠C(已知)
∴∠BFD=∠B( )
∴AB∥CD( ).
(2)已知,如图2,AD∥BE,∠1=∠2,∠A与∠E相等吗?试说明理由.
探索:在图1至图3中,已知△ABC的面积为a,
(1)如图1,延长△ABC的边BC到点D,使CD=BC,连接DA.若△ACD的面积为S1,则S1= (用含a的代数式表示)
(2)如图2,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE.若△DEC的面积为S2,则S2= (用含a的代数式表示)
(3)在图2的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图3).若阴影部分的面积为S3,则S3= (用含a的代数式表示),并运用上述(2)的结论写出理由.
发现:像上面那样,将△ABC各边均顺次延长一倍,连接所得端点,得到△DEF(如图3),此时,我们称△ABC向外扩展了一次.可以发现,扩展一次后得到的△DEF的面积是原来△ABC面积的 倍.
应用:要在一块足够大的空地上栽种花卉,工程人员进行了如下的图案设计:首先在△ABC的空地上种红花,然后将△ABC向外扩展三次(图4已给出了前两次扩展的图案).在第一次扩展区域内种谎话,第二次扩展区域内种紫花,第三次扩展区域内种蓝花.如果种红花的区域(即△ABC)的面积是10平方米,请你运用上述结论求出:
①种紫花的区域的面积;
②种蓝花的区域的面积.