图1中所示的遮阳伞,伞柄垂直于地面,其示意图如图2.当伞收紧时,点与点
重合(此时AC=PN+CN);当伞慢慢撑开时,动点
由
向
移动;当点
到过点
时,伞张得最开.已知伞在撑开的过程中,总有
分米,
分米,
分米
(1)求长的取值范围; (2)当
时,求
的值;
(3)在阳光垂直照射下,伞张得最开,求伞下的阴影(假定为圆面)面积为 (结果保留
).
已知分式的值是正整数,求整数a.
已知a=+2012,b=
+2013,c=
+2014,求a2+b2+c2-ab-bc-ca的值.
分解因式:
(1)3a3+5a2-2;
(2)5x2+6x-8;
(3)(x2+3x-2)(x2+3x+4)-16.
我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由高到低的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b2展开式中的系数等.
(1)根据上面的规律,写出(a+b)5的展开式.
(2)利用上面的规律计算:
25-5×24+10×23-10×22+5×2-1.
世博会某国国家馆模型的平面图如图所示,其外框是一个大正方形,中间四个大小相同的小正方形(阴影部分)是支撑展馆的核心筒,标记了字母的五个大小相同的正方形是展厅,剩余的四个大小相同的休息厅,已知核心筒的正方形边长比展厅的正方形边长的一半多1米.
(1)若设展厅的正方形边长为x米,用含x的代数
式表示核心筒的正方形边长为 米.
(2)若设核心筒的正方形边长为y米,求该模型的平面图外框大正方形的周长及每个休息厅的图形周长.(用含y的代数式表示)
(3)若设核心筒的正方形边长为2米,求该国家展厅(除四根核心筒)的占地面积。