游客
题文

问题背景 某课外学习小组在一次学习研讨中,得到如下两个命题:
①  如图1,O是正三角形ABC的中心,∠MON分别与AB、BC交于点P,Q,若∠MON = 120°,则四边形OPBQ的面积等于三角形ABC面积的三分之一.
②  如图2,O是正方形ABCD的中心,∠MON分别与AB、BC交于点P,Q,若∠MON = 90°,则四边形OPBQ的面积等于正方形ABCD面积的四分之一.然后运用类比的思想提出了如下的命题:
③  如图3,O是正五边形ABCDE的中心,∠MON分别与AB、BC交于点P,Q,若∠MON = 72°,则四边形OPBQ的面积等于五边形ABCDE面积的五分之一.
、任务要求 
(1)请你从①、②、③三个命题中选择一个进行证明;(说明:选①做对的得5分,选②做对的得4分,选③做对的得6分)
(2)请你继续完成下面的探索:
如图④,在正n(n≥3)边形ABCDEF…中,O是中心,∠MON分别与AB、BC交于点P,Q,若∠MON等于多少度时,则四边形OPBQ的面积等于正n边形ABCDE…面积的n分之一?(不要求证明)
解:(1)我选            .
证明:

科目 数学   题型 解答题   难度 中等
知识点: 三角形的五心 应用类问题
登录免费查看答案和解析
相关试题

(本题6分)如图,在正方形网格上的一个△ABC.

(1)作△ABC关于直线MN的对称图形(不写作法);
(2)以P为一个顶点作与△ABC全等的三角形(规定点P与点B对应,另两顶点都在图中网格交点处),则可作出 个三角形与△ABC全等.

(本题6分)如图,点B、F、C、E在一条直线上,FB=CE,AC=DF,请从下列三个条件:①AB=DE;②∠A=∠D;③∠ACB=∠DFE中选择一个合适的条件,使AB∥ED成立,并给出证明.

(1)选择的条件是(填序号)
(2)证明:

(本题8分)已知△ABC中,AB=AC,CD⊥AB于D.

(1)若∠A=38º,求∠DCB的度数;
(2)若AB=5,CD=3,求BC的长.

(本题6分)已知的平方根是的立方根是2,求的平方根.

(本题14分)如图,抛物线轴相交于两点(点在点的左侧),与轴交于点,顶点为.

(1)求出两点的坐标和抛物线的对称轴;
(2)连接,与抛物线的对称轴交于点,点为线段上的一个动点,过点交抛物线于点,设点的横坐标为
①用含的代数式表示线段的长,并求出当为何值时,四边形为平行四边形?
②设的面积为,求的函数关系式.
(3)若点G为抛物线上的一个动点,在x轴上是否存在这样的点H,使以B、C、G、H为顶点的四边形是平行四边形?如果存在,直接写出满足条件的H点的坐标;如果不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号