游客
题文

某超市销售一种新鲜“酸奶”, 此“酸奶”以每瓶3元购进,5元售出.这种“酸奶”的保质期不超过一天,对当天未售出的“酸奶”必须全部做销毁处理.
(1)该超市某一天购进20瓶酸奶进行销售.若设售出酸奶的瓶数为x(瓶),销售酸奶的利润为y(元),写出这一天销售酸奶的利润y(元)与售出的瓶数x(瓶)之间的函数关系式.为确保超市在销售这20瓶酸奶时不亏本,当天至少应售出多少瓶?
(2)小明在社会调查活动中,了解到近10天当中,该超市每天购进酸奶20瓶的销售情况统计如下:

每天售出瓶数
17
18
19
20
频数
1
2
2
5

根据上表,求该超市这10天每天销售酸奶的利润的平均数;
(3)小明根据(2)中,10天酸奶的销售情况统计,计算得出在近10天当中,其实每天购进19瓶总获利要比每天购进20瓶总获利还多.你认为小明的说法有道理吗?试通过计算说明.

科目 数学   题型 解答题   难度 较易
知识点: 统计量的选择 一次函数的最值
登录免费查看答案和解析
相关试题

已知:直线y=kx-3与x轴交于点A(4,0),与y轴交于点C,抛物线y=-x2+mx+n经过点A和点C,动点P在x轴上以每秒1个单位的速度由抛物线与x轴的另一个交点B向点A运动,点Q由点C沿着线段CA向点A运动且速度是点P运动速度的2倍。
(1).求直线和抛物线的解析式;
(2).如果点P和点Q同时出发,运动时间为t(秒),试问t为何值时△PQA是直角三角形。

如图:四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线y=ax2+bx+c的图象恰好经过x轴上的点A、B。

(1)求:点C的坐标;
(2)若抛物线向上平移后恰好经过点D,求:平移后抛物线的解析式。

已知:矩形ABCD中,AB=6,∠BAC=30o,点E在CD上,

若AE=4,求:梯形AECB的面积;
若点F在AC上,且∠AFB=∠CEA,求:的值。

新定义:抛物线在直线的一侧,直线与抛物线有且只有一个公共点时,称直线与抛物线相切;公共点叫做切点。
那么当二次函数y=x2+mx与y=3x+m-2的图象相切时,求:m 的值以及切点的坐标。

某水果批发市场经销一种水果,如果每千克盈利10元,每天可售出500千克.经市场
调查发现,在进货价不变的情况下,若每千克这种水果在原售价的基础上每涨价1元,日销售量将减少20千克.
(1)如果市场某天销售这种水果盈利了6 000元,同时顾客又得到了实惠,那么每千克
这种水果涨了多少元?
(2)设每千克这种水果涨价x元时(0<x≤25),市场每天销售这种水果所获利润为y元.
若不考虑其他因素,单纯从经济角度看,每千克这种水果涨价多少元时,市场每天
销售这种水果盈利最多?最多盈利多少元?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号