先阅读下面材料,再解答问题:
初中数学教科书中有这样一段叙述:“要比较与
的大小,可先求出
与
的差,再看这个差是正数,负数还是零.由此可见,要比较两个代数式值的大小,只要考虑它们的差就可以了.
甲、乙两人两次同时在同一粮店购买粮食(假设两次购买粮食的单价不相同),甲每次购买粮食100千克,乙每次购买粮食用去100元,设甲、乙两人第一次购粮食的单价为每千克x元,第二次购买粮食的单价为每千克y元
(1)用含x、y的代数式表示:甲每次购买粮食共需要付款______元,乙两次共购买_________千克粮食,若甲两次购买粮食的平均单价为元,乙两次购买粮食的平均单价为
元,
则=_______,
=_________. (共四个填空)
(2)若规定“谁两次购买粮食的平均单价低,谁的购买粮食方式更合算”,请你判断甲、乙两人的购买粮食方式那一个更合算些,并说明理由.
如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.
(1)求AC、BC的长;
(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;
(3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为顶点的三角形与△ABC是否相似?请说明理由;
(4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM的周长最小,若存在,求出最小周长;若不存在,请说明理由.
如图,直线交x轴于点A(-1,0),交y轴于B点,
;过A、B两点的抛物线交x轴于另一点C(3,0).
(1)求直线AB的表达式;
(2)求抛物线的表达式;
(3)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.
如图,直角梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°.折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8.
(1)求∠BDF的度数;
(2)求AB的长.
“天天乐”商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台)与销售单价x(元)满足,设销售这种台灯每天的利润为y(元).
(1)求y与x之间的函数关系式;
(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?
(3)在保证销售量尽可能大的前提下,该商场每天还想获得150元的利润,应该将销售单价定为多少元?
学校大力推动科技创新,并于近期开展了全校性的小制作比赛. 组委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的件数进行统计,绘制成如图所示的统计图. 已知从左到右各矩形的高度比是2:3:4:6:4:1,其中第四小组有2人交了1件作品,5人交了2件作品,2人交了3件作品. 请你回答:
(1)本次活动共收到_______________件作品;其中第四小组平均每人交了_____________件作品;
(2)经评比,第一组和第五组分别有3件和9件作品获奖,那么第一组和第五组的获奖率分别为____________和_______________;
(3)小制作评比结束后,组委会评出了4件最优秀的作品A、B、C、D,决定从中随机选出两件进行展示,请用树状图或列表法求出刚好展示作品A和作品C的概率.