如图,A、B为⊙O上的两个定点,P是⊙O上的动点(P不与A、B重合),我们称∠APB为⊙O上关于A、B的滑动角。
(1)已知∠APB是上关于点A、B的滑动角。
① 若AB为⊙O的直径,则∠APB=
② 若⊙O半径为1,AB=,求∠APB的度数
(2)已知为
外一点,以
为圆心作一个圆与
相交于A、B两点,∠APB为
上关于点A、B的滑动角,直线PA、PB分别交
于点M、N(点M与点A、点N与点B均不重合),连接AN,试探索∠APB与∠MAN、∠ANB之间的数量关系。
天猫商城旗舰店销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设该旗舰店每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.
(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
(3)如果旗舰店想要每月获得的利润不低于2000元,那么每月的成本最少需要元?
(成本=进价×销售量)
如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC与E,交BC与D.
(1)求证:D是BC的中点;
(2)求证:△BEC∽△ADC;
(3)若CE=5,BD=6.5,求AB的长.
已知与
是反比例函数
图象上的两个点.
(1)求m和k的值
(2)若点C(-1,0),连结AC,BC,求△ABC的面积
(3)根据图象直接写出一次函数的值大于反比例函数的值的的取值范围.
网格中每个小正方形的边长都是1.
(1)将图1中画一个格点三角形DEF,使得△DEF≌△ABC
(2)将图2中画一个格点三角形MNL,使得△MNL∽△ABC,且相似比为2:1
(3)将图3中画一个格点三角形OPQ,使得△OPQ∽△ABC,且相似比为:1
如图,AB是⊙O的直径,BC是⊙O的弦,半径OD⊥BC,垂足为E,若BC=,OE=3;
求:
(1)⊙O的半径;
(2)阴影部分的面积。