游客
题文

如图,A、B为⊙O上的两个定点,P是⊙O上的动点(P不与A、B重合),我们称∠APB为⊙O上关于A、B的滑动角。
(1)已知∠APB是上关于点A、B的滑动角。
① 若AB为⊙O的直径,则∠APB=      
② 若⊙O半径为1,AB=,求∠APB的度数

(2)已知外一点,以为圆心作一个圆与相交于A、B两点,∠APB为上关于点A、B的滑动角,直线PA、PB分别交于点M、N(点M与点A、点N与点B均不重合),连接AN,试探索∠APB与∠MAN、∠ANB之间的数量关系。

科目 数学   题型 解答题   难度 中等
知识点: 圆幂定理
登录免费查看答案和解析
相关试题

先化简,再求值:,其中

如图,已知抛物线轴交于点A(-4,0)和B(1,0),与y轴交于C点.

(1)求此抛物线的解析式;
(2)若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q,当P点运动到什么位置时,线段PQ的长最大,并求此时P点的坐标;
(3)设E是线段AB上的动点,作EF∥AC交BC于F,连接CE,当的面积是面积的2倍时,求E点的坐标.

如图,△ABC的边AB为⊙O的直径,BC与圆交于点D,D为BC的中点,过D作DE⊥AC于E.

(1)求证:AB=AC;
(2)求证:DE为⊙O的切线;
(3)若AB=13,sinB=,求CE的长.

如图:已知A(-4,n)、B(2,-4)是一次函数y1=kx+b的图象与反比例函数y2=的图象
的两个交点.

(1)求反比例函数和一次函数的解折式.
(2)求直线AB与x轴的交点C的坐标及△AOB的面积.
(3)求不等式y1<y2的解集(请直接写出答案).

如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).

(1)求点B,C的坐标;
(2)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号