游客
题文

如图,AD是等腰三角形ABC的底边BC上的高,DE∥AB,交AC于点E,判断△ADE是不是等腰三角形,并说明理由。

科目 数学   题型 解答题   难度 较易
知识点: 三角形的五心
登录免费查看答案和解析
相关试题

在学习《5.1圆》这一节时,小明遇到了一个问题:如图(1),△ABC与△DBC中,∠A=∠D=90°,M为BC中点,试说明点A、B、C、D在以点M为圆心的同一个圆上.

(1)(2)(3)(4)
小明想到了一个方法,如图(2),连接AM、DM,利用直角三角形的某条性质,得到AM=BM=CM=DM,进而说明了点A、B、C、D在以点M为圆心的同一个圆上.
(1)小明利用的直角三角形的性质是_______________;
(2)在如图(3)的四边形ABDC中,∠A=∠D=90°,点A、B、D、C在同一个圆上吗?说明你的理由.
(3)根据上一问的经验,请解决如下问题:
如图(4),△ABC中,三条高CF、BE、AD相交于点H,连接EF、FD、DE,试说明AD平分∠FDE.

某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨l元,月销售量就减少10件,但每件玩具售价不能高于40元.设每件玩具的销售单价上涨了x元时( 为正整数),月销售利润为y元.
(1)求y与x的函数关系式,并直接写出自变量x的取值范围.
(2)每件玩具的售价定为多少元时,月销售利润恰为2520元?
(3)每件玩具的售价定为多少元时,可使月销售利润最大?最大的月利润是多少?

已知:如图,P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,BC∥OP交⊙O于点C.

(1)判断直线PC与⊙O的位置关系,并证明你的结论;
(2)若BC=2,,求PC的长及点C到PA的距离.

如图,直线轴交于A点,与反比例函数的图象交于点M,过M作MH轴于点H,且tan∠AHO=2.

(1)求k的值,
(2)点N(,l)是反比例函数图象上的点,在轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由.

(1)任选且只能选以下三个条件中的一个,求二次函数的解析式;
变化的部分数值规律如下表:

②有序数对(-1,0),(1,4),(3,0)满足
③已知函数的图象的一部分(如图).
(2)直接写出二次函数的三个性质.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号