勾股定理有着悠久的历史,它曾引起很多人的兴趣.l955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在右图的勾股图中,已知∠ACB=90°,
∠BAC=30°,AB=4.作△PQR使得∠R=90°,点H在边QR上,点D,E在边PR上,点G,F在边_PQ上,那么△PQR的周长等于 ▲ .
如图,已知⊙O的半径是2,直线与⊙O相交于A、B两点,M、N 是 ⊙O上的两个动点,且在直线
的异侧若∠AMB=
,则四边形MANB面积的最大值是。
如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上的一点,且∠EPF=40°,则图中阴影部分的面积是__________(结果保留)
小明从图所示的二次函数的图象中,观察得出了下面五条信息:①
;②
;③
;④
;⑤
,你认为其中正确信息有。
有黑、蓝、红三支颜色的笔和白、绿两块橡皮,任意拿出一支笔和一块橡皮,则取到红笔、绿橡皮的概率为________。
如下图,△ABC中,∠C=30°.将△ABC绕点A顺时针旋转60°得到△ADE,AE与BC交于F,则∠AFB=°.