某机构为了研究人的脚的大小与身高之间的关系,随机测量了20人,得到如下数据
身高(厘米) |
192 |
164 |
172 |
177 |
176 |
159 |
171 |
166 |
182 |
166 |
脚长(码) |
48 |
38 |
40 |
43 |
44 |
37 |
40 |
39 |
46 |
39 |
身高(厘米) |
169 |
178 |
167 |
174 |
168 |
179 |
165 |
170 |
162 |
170 |
脚长(码) |
43 |
41 |
40 |
43 |
40 |
44 |
38 |
42 |
39 |
41 |
(1)若“身高大于175厘米”的为“高个”,“身高小于等于175厘米”的为“非高个”;“脚长大于42码”的为“大脚”,“脚长小于等于42码”的为“非大脚”,请根据上表数据完成下面的2×2列联表。
|
高个 |
非高个 |
合计 |
大脚 |
|
|
|
非大脚 |
|
12 |
|
合计 |
|
|
20 |
(2)根据(1)中的2×2列联表,能有多少把握认为脚的大小与身高之间有关系。
(本小题满分12分)如图所示,是正方形,
,
是
的中点.
(1)求证:;
(2)若,求三棱锥
的体积.
(本小题满分12分)已知向量函数
。
(1)求函数的最小正周期和最大值.
(2)求函数的单调递增区间.
(本小题满分12分)在锐角中,
分别是角
所对的边,且
.
(1)确定角的大小;
(2)若,且
的面积为
,求
的值.
(本题12分)
已知数列的前
项和为
,向量
,满足条件
.
(1)求数列的通项公式;
(2)设函数,数列
满足条件
,
.
①求数列的通项公式;
②设,求数列
的前
项和
.
(本题12分)
如图,三棱柱中,侧棱与底面垂直,
,
,点
为
的中点.
(1)证明:平面
;
(2)问在棱上是否存在点
,使
平面
?若存在,试确定点
的位置,并证明你的结论;若不存在,请说明理由.