(本小题满分12分)如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=4, G为PD的中点,E点在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求点G到平面PEC的距离.
(本小题13分)某食品厂定期购买面粉,已知该厂每天需要面粉6吨,每吨面粉价格为1800元,面粉的保管费为平均每天每6吨18元(从面粉进厂起开始收保管费,不足6 吨按6 吨算),购面粉每次需要支付运费900元,设该厂每天购买一次面粉。(注:该厂每次购买的面粉都能保证使用整数天)
(Ⅰ)计算每次所购买的面粉需支付的保管费是多少?
(Ⅱ)试求值,使平均每天所支付总费用最少?并计算每天最少费用是多少?
(本小题12分)已知是
的两个顶点,且满足
,
(Ⅰ)求顶点的轨迹方程
(Ⅱ)过点C作倾斜角为的直线交点A的轨迹于E、F两点,求
.
(本小题12分)点在椭圆
上,求点
到直线
的最大距离和最小距离。
(本小题12分)等差数列中,
,其前
项和为
.等比数列
的各项均为正数,
,且
,
.
(Ⅰ)求数列与
的通项公式;
(Ⅱ)求数列的前
项和
.
(本小题12分)设命题实数
满足
,其中
,命题
实数
满足
.
(Ⅰ)若,且
为真,求实数
的取值范围;
(Ⅱ)若是
的充分不必要条件,求实数
的取值范围.