游客
题文

小明和同桌小聪在课后复习时,对课本“目标与评定”中的一道思考题,进行了认真的探索。
【思考题】如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?

(1)请你将小明对“思考题”的解答补充完整:
解:设点B将向外移动x米,即BB1=x,
则B1C=x+0.7,A1C=AC﹣AA1=
而A1B1=2.5,在Rt△A1B1C中,由得方程                                   
解方程得x1=         ,x2=                   
∴点B将向外移动         米。
(2)解完“思考题”后,小聪提出了如下两个问题:
【问题一】在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?
【问题二】在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?
请你解答小聪提出的这两个问题。

科目 数学   题型 解答题   难度 中等
知识点: 一元二次方程的最值
登录免费查看答案和解析
相关试题

如图,正方形ABCD,点E、F分别为BC、CD边上的点,连接EF,点 M为EF上一点,且使AE平分∠BAM,AF平分∠DAF, 证明:∠EAF=45°

先化简,再求值:.选一个使代数式有意义的数代入求值.

如图,在平面直角坐标系中,直线轴交于点A,与y轴交于点C. 抛物线经过A、C两点,且与x轴交于另一点B(点B在点A右侧).

求抛物线的解析式及点B坐标;
若点M是线段BC上一动点,过点M的直线EF平行y轴交轴于点F,交抛物线于点E.求ME长的最大值;
试探究当ME取最大值时,在抛物线x轴下方是否存在点P,使以M、F、B、P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.

在Rt△ABC中,∠ACB=90°,tan∠BAC=. 点D在边AC上(不与A,C重合),连结BD,F为BD中点.
若过点D作DE⊥AB于E,连结CF、EF、CE,如图1. 设
则k =
若将图1中的△ADE绕点A旋转,使得D、E、B三点共线,点F仍为BD中点,如图2所示. 求证:BE-DE=2CF;
若BC=6,点D在边AC的三等分点处,将线段AD绕点A旋转,点F始终为BD中点,求线段CF长度的最大值.

某商场经营一批进价2元一件的小商品,在市场销售中发现此商品日销售单价x(元)与日销售量y(件)之间有如下关系:

x
3
5
9
11
y
18
14
6
2


求日销售量y(件)与日销售单价x(元)之间的函数关系式
设经营此商品的日销售利润为P(元),根据日销售规律:
①试求出日销售利润P(元)与日销售单价x之间的关系式,并求出日销售单价x为多少时,才能获得最大日销售利润,日销售利润P是否存在最小值?若存在,试求出,若不存在,请说明理由
②分别写出x和P的取值范围。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号