九年级上册的教材第118页有这样一道习题:
“在一块三角形余料ABC中,它的边BC=120mm,高线AD=80mm.要把它加工成正方形零件(如图),使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问加工成的正方形零件的边长为多少mm?”
(1)请你解答上题;
(2)若将上题图中的正方形PQMN改为矩形,其余条件不变,求矩形PQMN的面积S的最大值;
(3)我们把上面习题中的正方形PQMN叫做“BC边上的△ABC的内接正方形”,若在习题的条件下,又知AB=150mm,AC=100mm,请分别写出AB边上的△ABC的内接正方形的边长和AC边上的△ABC的内接正方形的边长(不必写出过程,只要直接写出答案即可,结果精确到1mm);
(4)结合第(1)、(3)题,若三角形的三边长分别为a,b,c,各边上的高分别为ha,hb,hc,要使a边上的三角形内接正方形的面积最大,请写出a与ha必须满足的条件(不必写出过程).
如图,求证:∠A+∠B+∠C+∠D+∠E=180°
如右图,为修铁路需凿通隧道AC,测得∠A=50°,∠B=40°,AB="5" km,BC="4" km,若每天凿隧道0.3km,问几天才能把隧道凿通?
已知:如下图,△ABC中,CD⊥AB于D,AC=4,BC=3,DB=.
(1)求DC的长;
(2)求AD的长;
(3)求AB的长;
(4)求证:△ABC是直角三角形.
已知,如图,等边三角形ABC,AD为BC边上的高线,若AB=2,求△ABC的面积.
已知,平面直角坐标系中,矩形OABC的边OC在x轴正半轴上,边OA在y轴正半轴上,B点的坐标为(4,3).将△AOC沿对角线AC所在的直线翻折,得到△AO’C,点O’为点O的对称点,CO’与AB相交于点E(如图①).
(1)试说明:EA=EC;
(2)求直线BO’的解析式;
(3)作直线OB(如图②),直线l平行于y轴,分别交x轴、直线OB、O’B于点P、M、N,设P点的横坐标为m(m>0).y轴上是否存在点F,使得ΔFMN为等腰直角三角形?若存在,请求出此时m的值;若不存在,请说明理由.