如图,在平面直角坐标系中,把抛物线
向左平移1个单位,再向下平移4个单位,得到抛物线
.所得抛物线与
轴交于
两点(点
在点
的左边),与
轴交于点
,顶点为
.
(1)写出的值;
(2)判断的形状,并说明理由;
(3)在线段上是否存在点
,使
∽
?若存在,求出点
的坐标;若不存在,说明理由.
阅读下面材料:解答问题
为解方程 (x2-1)2-5 (x2-1)+4=0,我们可以将(x2-1)看作一个整体,然后设 x2-1=y,那么原方程可化为 y2-5y+4=0,解得y1=1,y2=4.
当y=1时,x2-1=1,∴x2=2,∴x=±;当y=4时,x2-1=4,∴x2=5,∴x=±,
故原方程的解为 x1=,x2=-,x3=,x4=-.
上述解题方法叫做换元法;
请利用换元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0
如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC 将△ABC向x轴正方向平移5个单位得△A1B1C1,
再以O为旋转中心,将△A1B1C1旋转180°得△A2B2C2,画出平移和旋转后的图形,并标明
对应字母.
如图1,将三角板放在正方形
上,使三角板的直角顶点
与正方形
的顶点
重合,三角扳的一边交
于点
.另一边交
的延长线于点
.
求证:
;
如图2,移动三角板,使顶点
始终在正方形
的对角线
上,其他条件不变,题(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理
由:
如图3,将(2)中的“正方形
”改为“矩形
”,且使三角板的一边经过点
,其他条件不变,若
、
,求
的值.
某企业决定用万元援助灾区
所学校,用于搭建帐篷和添置教学设备。根据各校不同的受灾情况,该企业捐款的分配方案如下:所有学校得到的捐款数都相等,到第
所学校的捐款恰好分完,捐款的分配方法如下表所示. (其中
,
,
都是正整数)
分配顺序 |
分配数额(单位:万元) |
|
帐篷费用 |
教学设备费用 |
|
第1所学校 |
5 |
剩余款的![]() |
第2所学校 |
10 |
剩余款的![]() |
第3所学校 |
15 |
剩余款的![]() |
… |
… |
… |
第![]() |
![]() |
剩余款的![]() |
第![]() |
![]() |
0 |
根据以上信息,解答下列问题:写出
与
的关系式
当
时,该企业能援助多少所学校?
根据震区灾情,该企业计划再次提供不超过
万元的捐款,按照原来的分配方案援助其它学校.若
由 (2)确定,则再次提供的捐款最多又可以援助多少所学校?
已知一元二次方程中,如果
≥
,那么它的两个实数根是
,
.
计算:
、
的值(用含
、
、
的代数式表示);
设方程
的两个根分别为
、
,根据(1)所求的结果,不解方程,直接写出
=,
=;
如果方程
的一根是
,请你利用(1)中根与系数的关系求出方程的另一根及
的值.