游客
题文

将下列各式因式分解:(本题10分)
(1)                 (2)

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

如图1,矩形ABCD中, AB 7 cm AD 4 cm ,点EAD上一定点,点FAD延长线上一点,且 DF acm ,点PA点出发,沿AB边向点B以2cm/s的速度运动,连结PE,设点P运动的时间为ts,△PAE的面积为ycm2,当 0 t 1 时,△PAE的面积ycm2)关于时间ts)的函数图象如图2所示,连结PF,交CD于点H

(1)t的取值范围为  AE   cm

(2)如图3,将△HDF沿线段DF进行翻折,与CD的延长线交于点M,连结AM,当a为何值时,四边形PAMH为菱形?并求出此时点P的运动时间t

(3)如图4,当点P出发1s后,AD边上另一动点QE点出发,沿ED边向点D以1cm/s的速度运动,如果PQ两点中的任意一点到达终点后,另一点也停止运动,连结PQQH.若 a = 4 3 cm ,请问△PQH能否构成直角三角形?若能,请求出点P的运动时间t;若不能,请说明理由.

如图1,抛物线 y =﹣ x 2 + bx + c 经过A(﹣1,0),B(4,0)两点,与y轴相交于点C,连结BC,点P为抛物线上一动点,过点Px轴的垂线l,交直线BC于点G,交x轴于点E

(1)求抛物线的表达式;

(2)当P位于y轴右边的抛物线上运动时,过点CCF⊥直线lF为垂足,当点P运动到何处时,以PCF为顶点的三角形与△OBC相似?并求出此时点P的坐标;

(3)如图2,当点P在位于直线BC上方的抛物线上运动时,连结PCPB,请问△PBC的面积S能否取得最大值?若能,请求出最大面积S,并求出此时点P的坐标,若不能,请说明理由.

ab是任意两个实数,规定ab之间的一种运算“⊕”为: a b b a ( a > 0 ) a - b ( a 0 )

例如: 1 ( - 3 ) = - 3 1 = - 3 , ( - 3 ) 2 = ( - 3 ) - 2 = - 5

x 2 + 1 ( x - 1 ) = x - 1 x 2 + 1 (因为 x 2 + 1 0

参照上面材料,解答下列问题:

(1) 2 4    (﹣ 2 4 =   

(2)若 x > 1 2 ,且满足 2 x - 1 4 x 2 - 1 )=(﹣ 4 1 - 4 x ,求x的值.

如图,OAOD是⊙O半径,过A作⊙O的切线,交∠AOD的平分线于点C,连接CD,延长AO交⊙O于点E,交CD的延长线于点B

(1)求证:直线CD是⊙O的切线;

(2)如果D点是BC的中点,⊙O的半径为3cm,求 DE ̂ 的长度(结果保留π)

小宇在学习解直角三角形的知识后,萌生了测量他家对面位于同一水平面的楼房高度的想法,他站在自家C处测得对面楼房底端B的俯角为45°,测得对面楼房顶端A的仰角为30°,并量得两栋楼房间的距离为9米,请你用小宇测得的数据求出对面楼房AB的高度.(结果保留到整数,参考数据: 2 1 . 4 , 3 1 . 7

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号