阅读材料,并解答问题。
我们已经学过了一元一次不等式的解法,对于一些特殊的不等式,我们用作函数图象的方法求出它的解集,这也是《数学新课程标准》中所要求掌物的内容。例如:如何求不等式﹥x+2的解集呢? 我们可以设
=
,
=x+2.然后求出它们的交点的坐标, 并在同一直角坐标系中画出它们的函数图象,通过看图,可以发现此不等式的解集是“xく-3或0くxく1” 用上面的知识解决问题:求不等式x
-x>x+3的解集.
(1)设函数= ,
=
(2)两个函数图象的交点坐标为
(3)在所给的直角坐标系中画出两个函数的图象(不要列表).
(4)观察发现:不等式x-x>x+3的解集为
如图,⊙O的半径OB=5 cm,AB是⊙O的弦,点C是AB延长线上一点,且∠OCA=30°,OC=8 cm,求AB的长.
如图,已知△ABC的三个顶点的坐标分别 为A(-6,0)、B(-2,3)、C(-1,0).
(1)将△ABC绕坐标原点O逆时针旋转90°.画出对应的△A′B′C′图形;
(2)若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.
(每小题6分共12分)解方程
(1)2(x+2)2-8="0" ;
(2)2x2-7x+3=0.
如图,点E、D、F在同一条直线上,∠CDE=90°,∠1=∠2.
哪些角互为余角?哪些角互为补角?
∠ADC和∠BDC有什么关系?为什么?
∠ADF和∠BDE有什么关系?为什么?
解方程(每题4分,共8分)
(1)
(2)