某政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.物价部门规定,这种护眼台灯的销售单价不得高于32元.销售过程中发现,月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+n.
(1)当销售单价x定为25元时,李明每月获得利润为w为1250元,则n= ;
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)当销售单价定为多少元时,每月可获得最大利润?并求最大利润为多少元.
选择适当的方法解下列一元二次方程:
(1)(2)
(1)计算:;
(2)先化简,再求值:,其中x=3.
数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:
小聪只带了直角三角板,他发现利用三角板也可以作角平分线,方法如下:
步骤:①利用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.
②分别过M、N作OM、ON的垂线,交于点P.
③作射线OP.则OP为∠AOB的平分线.
小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.
根据以上情境,解决下列问题:
(1)李老师用尺规作角平分线时,用到的三角形全等的判定方法是_______.
(2)小聪的作法正确吗?请说明理由.
(3)请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)
如图1,在ABC中,AB=AC,点D是BC的中点,点E在AD上
⑴求证:BE=CE;
⑵如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变. 求证:AEF≌
BCF.
(8分)如图,在长方形ABCD中,将△ABC沿AC对折至△AEC位置,CE与AD交于点F.
(1)试说明:AF=FC;
(2)如果AB=3,BC=4,求AF的长.