一个单摆在质量为m1、半径为R1的星球上做周期为T1的简谐运动,在质量为m2、半径为R2的星球上做周期为T2的简谐运动,求T1与T2之比。
一个物体沿x轴做简谐运动,振幅为8 cm,频率为0.5 Hz,在t=0时,位移为4 cm,且向x轴负方向运动,试写出用正弦函数表示的振动方程.
根据如图示的振动图像.
(1)算出下列时刻振子对应平衡位置的位移.
①t1=0.5 s;②t2=1.5 s.
(2)将位移随时间的变化规律写成x=Asin(ωt+φ)的形式并指出振动的初相位是多少?
如图所示是一个单摆振动的情形,O是它的平衡位置,B、C是摆球所能到达的最远位置.设摆球向右方向运动为正方向.图1-3-16所示是这个单摆的振动图像.根据图像回答:(取π2=10)
甲 乙
(1)单摆振动的频率是多大?
(2)开始时刻摆球在何位置?
(3)若当地的重力加速度为10 m/s2,试求这个摆的摆长是多少?
一质点做简谐运动,其位移和时间关系如图所示.
(1)求t=0.25×10-2s时的位移;
(2)在t=1.5×10-2s到2×10-2s的振动过程中,质点的位移、回复力、速度、动能、势能如何变化?
(3)在t=0到8.5×10-2s时间内,质点的路程、位移各多大?
一个小球和轻质弹簧组成的系统按x1=5 sincm的规律振动.
(1)求该振动的周期、频率、振幅和初相.
(2)另一简谐运动的表达式为x2=5 sincm,求它们的相位差.