某项新技术进入试用阶段前必须对其中三项不同指标甲、乙、丙进行通过量化检测。假设该项新技术的指标甲、乙、丙独立通过检测合格的概率分别为,指标甲、乙、丙检测合格分别记4分、2分、4分,若某项指标不合格,则该项指标记0分,各项指标检测结果互不影响。
(Ⅰ)求该项技术量化得分不低于8分的概率;
(Ⅱ)记该技术的三个指标中被检测合格的指标个数为随机变量,求
的分布列与数学期望。
(12分)已知p:
,q:
.
(Ⅰ)若p是q充分不必要条件,求实数的取值范围;
(Ⅱ)若“p”是“
q”的充分不必要条件,求实数
的取值范围.
(Ⅰ)计算
(Ⅱ)已知复数满足:
求
的值.
如图,已知四棱锥,底面
为菱形,
平面
,
,
分别是
的中点.
(1)证明:;
(2)若为
上的动点,
与平面
所成最大角的正弦值为
,求二面角
的余弦值.
某房屋开发公司用100万元购得一块土地,该地可以建造每层1000m2的楼房,楼房的总建筑面积(即各层面积之和)每平方米平均建筑费用与建筑高度有关,楼房每升高一层,整幢楼房每平方米建筑费用增加20元。已知建筑5层楼房时,每平方米建筑费用为400元,公司打算造一幢高于5层的楼房,为了使该楼房每平方米的平均综合费用最低(综合费用是建筑费用与购地费用之和),公司应把楼层建成几层?
已知曲线. (1)求曲线在
处的切线方程;(2)求曲线过点
的切线方程.