请你在下面3个网格(两相邻格点的距离均为1个单位长度)内,分别设计1个图案,要求:在图(1)中所设计的图案是面积等于的轴对称图形;在图(2)中所设计的图案是面积等于2
的中心对称图形;在图(3)中所设计的图案既是轴对称图形又是中心对称图形,并且面积等于3
.将你设计的图案用铅笔涂黑.
“中国人的饭碗必须牢牢掌握在咱们自己手中”.为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具.已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.
(1)求购进1件甲种农机具和1件乙种农机具各需多少万元?
(2)若该粮食生产基地计划购进甲、乙两农机具共10件,且投入资金不少于9.8万元又不超过12万元,设购进甲种农机具 件,则有哪几种购买方案?哪种购买方案需要的资金最少,最少资金是多少?
(3)在(2)的方案下,由于国家对农业生产扶持力度加大,每件甲种农机具降价0.7万元,每件乙种农机具降价0.2万元,该粮食生产基地计划将节省的资金全部用于再次购买甲、乙两种农机具(可以只购买一种)请直接写出再次购买农机具的方案有哪几种?
在等腰 中, , 是直角三角形, , ,连接 、 ,点 是 的中点,连接 .
(1)当 ,点 在边 上时,如图①所示,求证: ;
(2)当 ,把 绕点 逆时针旋转,顶点 落在边 上时,如图②所示,当 ,点 在边 上时,如图③所示,猜想图②、图③中线段 和 又有怎样的数量关系?请直接写出你的猜想,不需证明.
已知 、 两地相距 ,一辆货车从 前往 地,途中因装载货物停留一段时间.一辆轿车沿同一条公路从 地前往 地,到达 地后(在 地停留时间不计)立即原路原速返回.如图是两车距 地的距离 与货车行驶时间 之间的函数图象,结合图象回答下列问题:
(1)图中 的值是 ;轿车的速度是 ;
(2)求货车从 地前往 地的过程中,货车距 地的距离 与行驶时间 之间的函数关系式;
(3)直接写出轿车从 地到 地行驶过程中,轿车出发多长时间与货车相距 ?
为庆祝中国共产党建党100周年,某中学开展“学史明理、学史增信、学史崇德、学史力行”知识竞赛,现随机抽取部分学生的成绩分成 、 、 、 、 五个等级进行统计,并绘制成两幅不完整的统计图,请根据图中提供的信息,解答下列问题:
(1)本次调查中共抽取 名学生;
(2)补全条形统计图;
(3)在扇形统计图中,求 等级所对应的扇形圆心角的度数;
(4)若该校有1200名学生参加此次竞赛,估计这次竞赛成绩为 和 等级的学生共有多少名?
如图,抛物线 与 轴交于点 和点 ,与 轴交于点 ,连接 ,与抛物线的对称轴交于点 ,顶点为点 .
(1)求抛物线的解析式;
(2)点 是对称轴左侧抛物线上的一个动点,点 在射线 上,若以点 、 、 为顶点的三角形与 相似,请直接写出点 的坐标.