阅读下列材料:
正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫格点三角形.
数学老师给小明同学出了一道题目:在图正方形网格(每个小正方形边长为1)中画出格点△ABC,使,
;
小明同学的做法是:由勾股定理,得,
,于是画出线段AB、AC、BC,从而画出格点△ABC.
(1)请你参考小明同学的做法,在图中的正方形网格(每个小正方形边长为1)中画出格点△(
点位置如图所示),使
=
=5,
.(直接画出图形,不写过程);
(2)观察△ABC与△的形状,猜想∠BAC与∠
有怎样的数量关系,并证明你的猜想.
(满分10分)已知关于 的方程
有两个实数根
.
(1)求 的取值范围;
(2)若 ,求
的值;
(满分8分)近几年孝感市加大中职教育投入力度,取得了良好的社会效果.某校随机调查了九年级 名学生的升学意向,并根据调查结果绘制出如下两幅不完整的统计图.请你根据图中的信息解答下列问题:
(1) ________;
(2)扇形统计图中"职高"对应的扇形的圆心角 _________;
(3)请补全条形统计图;
(4)若该校九年级有学生900人,估计该校共有多少名毕业生的升学意向是职高?
(满分8分)如图所示,网格中每个小正方形的边长为1,请你认真观察图(1)中的三个网格中阴影部分构成的图案,解答下列问题:
(1)这三个图案都具有以下共同特征:都是______对称图形,都不是____对称图形.
(2)请在图(2)中设计出一个面积为4,且具备上述特征的图案,要求所画图案不能与图(1)中所给出的图案相同.
(满分6分)解关于的方程:
探究问题:
⑴方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB 与AD重合,由旋转可得:
AB="AD,BG=DE," ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF="45°" ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2, ∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.
⑵方法迁移:
如图②,将 沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=
∠DAB.试猜想DE,BF,EF之间有何数量
关系,并证明你的猜想.
⑶问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足 ,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).