(本小题满分12分)
为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间(单位:小时)与当天投篮命中率
之间的关系:
时间![]() |
1 |
2 |
3 |
4 |
5 |
命中率![]() |
0.4 |
0.5 |
0.6 |
0.6 |
0.4 |
求小李这5天的平均投篮命中率;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率.
附:线性回归方程中系数计算公式
,
,
(本小题满分10分) 已知(
),
是关于
的
次多项式;
(1)若恒成立,求
和
的值;并写出一个满足条件的
的表达式,无需证明.
(2)求证:对于任意给定的正整数,都存在与
无关的常数
,
,
,…,
,
使得.
(本小题满分10分)某班组织的数学文化节活动中,通过抽奖产生了名幸运之星.这
名幸运之星可获得
、
两种奖品中的一种,并规定:每个人通过抛掷一枚质地均匀的骰子决定自己最终获得哪一种奖品,抛掷点数小于
的获得
奖品,抛掷点数不小于
的获得
奖品.
(1)求这名幸运之星中获得
奖品的人数大于获得
奖品的人数的概率;
(2)设、
分别为获得
、
两种奖品的人数,并记
,求随机变量
的分布列及数学期望.
(本小题满分10分,不等式选讲)
已知不等式对于满足条件
的任意实数
恒成立,求实数
的取值范围.
(本小题满分10分,坐标系与参数方程选讲)
已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的正半轴重合.若直线l的极坐标方程为.
(1)把直线的极坐标方程化为直角坐标方程;
(2)已知为椭圆
上一点,求
到直线
的距离的最小值.
(本小题满分10分,矩阵与变换)
已知矩阵,矩阵
,直线
经矩阵
所对应的变换得到直线
,直线
又经矩阵
所对应的变换得到直线
.
(1)求的值;(2)求直线
的方程.