某校物理兴趣小组决定举行遥控赛车比赛。比赛路径如图所示,赛车从起点A出发,沿水平直线轨道运动L后,由B点进入半径为R的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨道上运动到C点,并能越过壕沟。已知赛车质量m=0.1kg,通电后以额定功率P=1.5w工作,进入竖直轨道前受到阻力恒为0.3N,随后在运动中受到的阻力均可不记。图中L=10.00m,R=0.32m,h=1.25m,S=1.50m。问:要使赛车完成比赛,电动机至少工作多长时间?(取g=10 )
如图所示,三个同心圆是磁场的理想边界,圆1半径R1=R、圆2半径R2=3R、圆3半径R3(R3>R2)大小未定,圆1内部区域磁感应强度为B,圆1与圆2之间的环形区域是无场区,圆2与圆3之间的环形区域磁感应强度也为B。两个区域磁场方向均垂直于纸面向里。t=0时一个质量为m,带电量为+q(q>0)的离子(不计重力),从圆1上的A点沿半径方向以速度飞进圆1内部磁场。问:
(1)离子经多长时间第一次飞出圆1?
(2)离子飞不出环形磁场圆3边界,则圆3半径R3至少为多大?
(3)在满足了(2)小题的条件后,离子自A点射出后会在两个磁场不断地飞进飞出,从t=0开始到离子第二次回到A点,离子运动的总时间为多少?
(4)在同样满足了(2)小题的条件后,若环形磁场方向为垂直于纸面向外,其它条件不变,从t=0开始到离子第一次回到A点,离子运动的路径总长为多少?
如下图1所示,水平面内的直角坐标系的第一象限有磁场分布,方向垂直于水平面向下,磁感应强度沿y轴方向没有变化,与横坐标x的关系如下图2所示,图线是双曲线(坐标轴是渐进线);顶角θ=45°的光滑金属长导轨 MON固定在水平面内,ON与x轴重合,一根与ON垂直的长导体棒在水平向右的外力作用下沿导轨MON向右滑动,导体棒在滑动过程中始终保持与导轨良好接触。已知t=0时,导体棒位于顶角O处;导体棒的质量为m=2kg;OM、ON接触处O点的接触电阻为R=0.5Ω,其余电阻不计;回路电动势E与时间t的关系如图3所示,图线是过原点的直线。求:
(1)t=2s时流过导体棒的电流强度I2的大小;
(2)1~2s时间内回路中流过的电量q的大小;
(3)导体棒滑动过程中水平外力F(单位:N)与横坐标x(单位:m)的关系式。
电子所带电荷量最早是由美国科学家密立根所做的油滴实验测得的。密立根油滴实验的原理如图所示:两块水平放置的平行金属板与电源相连接,上板带正电,下板带负电,油滴从喷雾器喷出后,由于与喷嘴摩擦而带负电,油滴散布在油滴室中,在重力作用下,少数油滴通过上面金属板的小孔进入(可认为初速度为0)平行金属板间,落到两板之间的匀强电场中。在强光照射下,观察者通过显微镜观察油滴的运动。
从喷雾喷出的小油滴可以视为球形,小油滴在空气中下落时受到的空气阻力f大小跟它下落的速度v的大小的关系是:f=6πηrv,式中r为油滴半径,η为粘滞系数。设重力加速度为g,不考虑油滴的蒸发。
(1)实验中先将开关断开,测出小油滴下落一段时间后达到匀速运动时的速度v1,已知油的密度为ρ,空气的密度为ρ′,粘滞系数为η,试由以上数据计算小油滴的半径r;
(2)待小球向下运动的速度达到v1后,将开关闭合,小油滴受电场力作用,最终达到向上匀速运动,测得匀速运动的速度v2,已知两金属板间的距离为d,电压为U。试由以上数据计算小油滴所带的电荷量q;
(3)大致(不要求精确的标度)画出油滴从进入平行金属板到向上匀速运动这段过程中的v—t图像(设竖直向下为正方向)。
质量m=1.5kg的物块(可视为质点)在水平恒力F作用下,从水平面上A点静止开始运动,运动一段距离撤去该力,物块继续滑行t=2.0s停在B点,已知A、B两点的距离x=5.0m,物块与水平面间的动摩擦因数,求恒力F多大?
.(2012·扬州模拟)如图所示,一根劲度系数k=200 N/m的轻质弹簧拉着质量为m=0.2 kg的物体从静止开始沿倾角为θ=37°的斜面匀加速上升,此时弹簧伸长量x=0.9 cm,在t=1.0 s内物体前进了s=0.5 m。
求:(1)物体加速度的大小;
(2)物体和斜面间的动摩擦因数。(取g=10 m/s2,sin37°=0.6,cos37°=0.8)