(20分)如图所示,轻弹簧一端连于固定点O,可在竖直平面内自由转动,另一端连接一带电小球P,其质量m=2×10-2 kg,电荷量q="0.2" C.将弹簧拉至水平后,以初速度V0="20" m/s竖直向下射出小球P,小球P到达O点的正下方O1点时速度恰好水平,其大小V="15" m/s.若O、O1相距R="1.5" m,小球P在O1点与另一由细绳悬挂的、不带电的、质量M=1.6×10-1 kg的静止绝缘小球N相碰。碰后瞬间,小球P脱离弹簧,小球N脱离细绳,同时在空间加上竖直向上的匀强电场E和垂直于纸面的磁感应强度B=1T的弱强磁场。此后,小球P在竖直平面内做半径r="0.5" m的圆周运动。小球P、N均可视为质点,小球P的电荷量保持不变,不计空气阻力,取g="10" m/s2。那么,
(1)弹簧从水平摆至竖直位置的过程中,其弹力做功为多少?
(2)请通过计算并比较相关物理量,判断小球P、N碰撞后能否在某一时刻具有相同的速度。
(3)若题中各量为变量,在保证小球P、N碰撞后某一时刻具有相同速度的前提下,请推导出r的表达式(要求用B、q、m、θ表示,其中θ为小球N的运动速度与水平方向的夹角)。
(16分)驾驶证考试中的路考,在即将结束时要进行目标停车,考官会在离停车点不远的地方发出指令,要求将车停在指定的标志杆附近,终点附近的道路是平直的,依次有编号为A、B、C、D、E的五根标志杆,相邻杆之间的距离△L=16.0m。一次路考中,学员甲驾驶汽车,学员乙坐在后排观察并记录时间,学员乙与车前端面的距离为△s=2.0m。假设在考官发出目标停车的指令前,汽车是匀速运动的,当学员乙经过O点考官发出指令:“在D标志杆目标停车”,发出指令后,学员乙立即开始计时,学员甲需要经历 △t=0.5s的反应时间才开始刹车,开始刹车后汽车做匀减速直线运动,直到停止。学员乙记录下自己经过B、C杆时的时刻tB=5.50s,tC=7.50s。已知O、A间的距离LOA=69m。求:
(1)刹车前汽车做匀速运动的速度大小v0及汽车开始刹车后做匀减速直线运动的加速度大小a;
(2)汽车停止运动时车头前端面离D的距离。
)如图所示为两块质量均为m,长度均为L的木板放置在光滑的水平桌面上,木块1质量也为m(可视为质点),放于木板2的最右端,木板3沿光滑水平桌面运动并与叠放在下面的木板2发生碰撞后粘合在一起,如果要求碰后木块1停留在木板3的正中央,木板3碰撞前的初速度v0为多大?已知木块与木板之间的动摩擦因数为m。
如图所示,横截面(纸面)为的三棱镜置于空气中,顶角
A=60°。纸面内一细光束以入射角i射入AB面,直接到达AC面并射出,光束在通过三棱镜时出射光与入射光的夹角为φ(偏向角)。改变入射角i,当i=i0时,从AC面射出的光束的折射角也为i0,理论计算表明在此条件下偏向角有最小值φ0=30°。求三棱镜的折射率n。
如图,一上端开口、下端封闭的细长玻璃管,上部有长24 cm的水银柱,封有长12cm的空气柱,此时水银面恰好与管口平齐。已知大气压强为p0=76 cmHg,如果使玻璃管绕底端在竖直平面内缓慢地转动180°,求在开口向下时管中空气柱的长度。封入的气体可视为理想气体,在转动过程中气体温度保持不变,没有发生漏气。
如图所示,等腰直角三角形ACD的直角边长为2a,P为AC边的中点,Q为CD边上的一点,DQ=a。在△ACD区域内,既有磁感应强度大小为B、方向垂直纸面向里的匀强磁场,又有电场强度大小为E的匀强电场,一带正电的粒子自P点沿平行于AD的直线通过△ACD区域。不计粒子的重力。
(1)求电场强度的方向和粒子进入场区的速度大小v0;
(2)若仅撤去电场,粒子仍以原速度自P点射入磁场,从Q点射出磁场,求粒子的比荷;
(3)若仅撤去磁场,粒子仍以原速度自P点射入电场,求粒子在△ACD区域中运动的时间。