已知椭圆的离心率为=,椭圆上的点到两焦点的距离之和为12,点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点.点在椭圆上,且位于轴的上方,.(I) 求椭圆的方程;(II)求点的坐标;(III) 设是椭圆长轴AB上的一点,到直线AP的距离等于,求椭圆上的点到点的距离的最小值.
若是定义在上的增函数,且对一切满足. (1)求的值; (2)若解不等式.
(本小题满分12分) 如图,平行四边形中,,将沿折起到的位置,使平面平面 (I)求证:; (Ⅱ)求三棱锥的侧面积.
如图,棱柱的侧面是菱形, (Ⅰ)证明:平面平面; (Ⅱ)设是上的点,且平面,求的值.
已知平面//平面,AB、CD是夹在、间的两条线段,A、C在内,B、D在内,点E、F分别在AB、CD上,且,求证:.
(本题满分为12分) 如图所示:已知⊙O所在的平面,AB是⊙O的直径,C是⊙O上任意一点,过A作于E,求证:.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号